Skip to main content
Log in

Plant proteolytic enzymes: possible roles during programmed cell death

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Proteolytic enzymes are known to be associated with developmentally programmed cell death during organ senescence and tracheary element differentiation. Recent evidence also links proteinases with some types of pathogen- and stress-induced cell suicide. The precise roles of proteinases in these and other plant programmed cell death processes are not understood, however. To provide a framework for consideration of the importance of proteinases during plant cell suicide, characteristics of the best-known proteinases from plants including subtilisin-type and papain-type enzymes, phytepsins, metalloproteinases and the 26S proteasome are summarized. Examples of serine, cysteine, aspartic, metallo- and threonine proteinases linked to animal programmed cell death are cited and the potential for plant proteinases to act as mediators of signal transduction and as effectors of programmed cell death is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akopian, T.N., Kisselev, A.F. and Goldberg, A.L. 1997. Processive degradation of proteins and other catalytic properties of the proteasome from Thermoplasma acidophilum. J. Biol. Chem. 272: 1791–1798.

    Google Scholar 

  • Alexander, C.M., Howard, E.W., Bissell, M.J. and Werb, Z. 1996. Rescue of mammary epithelial cell apoptosis and entactin degradation by a tissue inhibitor of metalloproteinases-1 transgene. J. Cell Biol. 135: 1669–1677.

    Google Scholar 

  • Bachmair, A., Becker, F., Masterson, R.V. and Schell, J. 1990. Perturbation of the ubiquitin system causes leaf curling, vascular tissue alteration and necrotic lesions in a higher plant. EMBO J. 9: 4543–4549.

    Google Scholar 

  • Bahrami, A.R. and Gray, J.E. 1999. Expression of a proteasome α-type subunit gene during tobacco development and senescence. Plant Mol. Biol. 39: 325–333.

    Google Scholar 

  • Becker, C., Fischer, J., Nong, V.H. and Münitz, K. 1994. PCR cloning and expression analysis of cDNAs encoding cysteine proteinases from germinating seeds of Vicia sativa L. Plant Mol. Biol. 26: 1207–1212.

    Google Scholar 

  • Becker, C., Sneyuk, V.I., Shutov, A.D., Nong, V.H., Fischer, J., Horstmann, C. and Muntz, K. 1997. Proteinase A, a storageglobulin-degrading endopeptide of vetch (Vicia sativa L.) seeds, is not involved in early steps of storage-protein mobilization. Eur. J. Biochem. 248: 304–312.

    Google Scholar 

  • Becker, F., Buschfeld, E., Schell, J. and Bachmair, A. 1993. Altered response to viral infection by tobacco plants perturbed in ubiquitin system. Plant J. 3: 875–881.

    Google Scholar 

  • Beers, E.P. 1997. Programmed cell death during plant growth and development. Cell Death Differ. 4: 649–661.

    Google Scholar 

  • Beers, E.P. and Freeman, T.B. 1997. Proteinase activity during tracheary element differentiation in Zinnia mesophyll cultures. Plant Physiol. 113: 873–880.

    Google Scholar 

  • Bell, P.R. 1996. Megaspore abortion: a consequence of selective apoptosis? Int. J. Plant Sci. 157: 1–7.

    Google Scholar 

  • Bethke, P.C., Hillmer, S. and Jones, R.L. 1996. Isolation of intact protein storage vacuoles from barley aleurone. Plant Physiol. 110: 521–529.

    Google Scholar 

  • Bethke, P.C., Lonsdale, J.E., Fath, A. and Jones, R.L. 1999. Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11: 1033–1045.

    Google Scholar 

  • Bonner, L.J. and Dickinson, H.G. 1989. Anther dehiscence in Lycopersicon esculentum Mill. New Phytol. 113: 97–115.

    Google Scholar 

  • Buchanan-Wollaston, V. 1997. The molecular biology of leaf senescence. J Exp. Bot. 48: 181–199.

    Google Scholar 

  • Bushnell, T.P., Bushnell, D. and Jagendorf, A.T. 1993. A purified zinc protease of pea chloroplasts, EP1, degrades the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol. 103: 585–591.

    Google Scholar 

  • Callis, J. 1997. Regulation of protein degradation in plants. Genet. Eng. 19: 121–148.

    Google Scholar 

  • Cejudo, F.J., Ghose, T.K., Stabel, P. and Baulcombe, D.C. 1992. Analysis of the gibberellin-responsive promoter of a cathepsin B-like gene from wheat. Plant Mol. Biol. 20: 849–856.

    Google Scholar 

  • Cercos, M., Santamaria, S. and Carbonell, J. 1999. Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination. Plant Physiol. 119: 1341–1348.

    Google Scholar 

  • Chen, F. and Foolad, M.R. 1997. Molecular organization of a gene in barley which encodes a protein similar to aspartic protease and its specific expression in nucellar cells during degeneration. Plant Mol. Biol. 35: 821–831.

    Google Scholar 

  • Cordeiro, M.C., Xue, Z.-T., Pietrzak, M., Paris, M.S. and Brodelius, P.E. 1995. Plant aspartic proteinases from Cynara cardunculus ssp. flavescens cv. Cardoon; nucleotide sequence of a cDNA encoding cyprosin and its organ-specific expression. In: T. Takahashi (Ed.) Aspartic Proteinases, Plenum, New York, pp. 367–372.

    Google Scholar 

  • Cordozo, C., Vinitsky, A., Hidalgo, M.C., Michaud, C. and Orlowski, M. 1992. A 3,4-dichloroisocoumarin-resistant component of the multicatalytic proteinase complex. Biochemistry 31: 7373–7380.

    Google Scholar 

  • Coux, O., Tanaka, K. and Goldberg, A.L. 1996. Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65: 801–847.

    Google Scholar 

  • Crafts-Brandner, S.J., Klein, R.R., Klein, P., Hölzer, R. and Feller, U. 1996. Coordination of protein and mRNA abundances of stromal enzymes and mRNA abundances of the Clp protease subunits during senescence of Phaseolus vulgaris (L.) leaves. Planta 200: 312–318.

    Google Scholar 

  • Cui, H., Matsui, K., Omura, S., Schauer, S.L., Matulka, R.A., Sonenshein, G.E. and Ju, S.-T. 1997. Proteasome regulation of activation-induced T cell death. Proc. Natl. Acad. Sci. USA 94: 7515–7520.

    Google Scholar 

  • D'Andrea, A. and Pellman, D. 1998. Deubiquitinating enzymes: a new class of biological regulators. Crit. Rev. Biochem. Mol. Biol. 33: 337–352.

    Google Scholar 

  • D'Hondt, K., Bosch, D., Van Damme, J., Goethals, M., Vanderkerckhove, J. and Krebbers, E. 1993. An aspartic proteinase present in seeds cleaves Arabidopsis 2 S albumin precursors in vitro. J. Biol. Chem. 268: 20884–20891.

    Google Scholar 

  • D'Hondt, K.D., Stack, S., Gutteridge, S., Vandekerckhove, J., Krebbers, E. and Gal, S. 1997. Aspartic proteinase genes in the Brassicaceae Arabidopsis thaliana and Brassica napus. Plant Mol. Biol. 33: 187–192.

    Google Scholar 

  • D'silva, I., Poirier, G. and Heath, M.C. 1998. Activation of cysteine proteases in cowpea plants during the hypersensitive response: a form of programmed cell death. Exp. Cell Res. 245: 389–399.

    Google Scholar 

  • Dawson, S.P., Arnold, J.E., Mayer, N.J., Reynolds, S.E., Billett, M.A., Gordon, C., Colleaux, Kloetzel, P.M., Tanaka, K., Mayer, R.J. 1995. Developmental changes of the 26S proteasome in abdominal intersegmental muscles of Manduca sexta during programmed cell death. J. Biol. Chem. 270: 1850–1858.

    Google Scholar 

  • de Barros, E.G. and Larkins, B.A. 1990. Purification and characterization of zein-degrading proteases from endosperm of germinating maize seeds. Plant Physiol. 94: 297–303.

    Google Scholar 

  • Deiss, L.P., Galinka, H., Berissi, H., Cohen, O. and Kimchi, A. 1996. Cathepsin D protease mediates programmed cell death induced by interferon-γ, Fas/APO-1 and TNF-γ. EMBO J. 15: 3861–3870.

    Google Scholar 

  • del Pozo, O. and Lam, E. 1998. Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr. Biol. 8: 1129–1132.

    Google Scholar 

  • DeMartino, G.N. and Slaughter, C.A. 1999. The proteasome, a novel protease regulated by multiple mechanisms. J. Biol. Chem. 274: 22123–22126.

    Google Scholar 

  • Dick, L.R., Moomaw, C.R., DeMartino, G.N. and Slaughter, C.A. 1991. Degradation of oxidized insulin B chain by the multiproteinase complex macropain (proteasome). Biochemistry 30: 2725–2734.

    Google Scholar 

  • Domoto, C., Watanabe, H., Abe, M., Abe, K. and Arai, S. 1995. Isolation and characterization of two distinct cDNA clones encoding corn seed cysteine proteinases. Biochim. Biophys. Acta 1263: 241–244.

    Google Scholar 

  • Dou, Q.P., McGuire, T.F., Peng, Y. and An, B. 1999. Proteasome inhibition leads to significant reduction of bcr-abl expressionand subsequent induction of apoptosis in K562 human chronic myelogenous leukemia cells. J. Pharm. Exp. Ther. 289: 781–790.

    Google Scholar 

  • Drake, R., John, I., Farrell, A., Cooper, W., Schuch, W. and Grierson, D. 1996. Isolation and analysis of cDNAs encoding tomato cysteine proteases expressed during leaf senescence. Plant Mol. Biol. 30: 755–767.

    Google Scholar 

  • Drexler, H.C.A. 1997. Activation of the cell death program by inhibition of proteasome function. Proc. Natl. Acad. Sci. USA 94: 855–860.

    Google Scholar 

  • Fu, H., Doelling, J.H., Arendt, C.S., Hochstrasser, M. and Vierstra, R.D. 1998. Molecular organization of the 20S proteasome gene family from Arabidopsis thaliana. Genetics 149: 677–692.

    Google Scholar 

  • Fu, H., Girod, P.-A., Doelling, J.H., van Nocker, S., Hochstrasser, M., Finley, D. and Vierstra, R.D. 1999. Structural and functional analyses of the 26S proteasome subunits from plants. Plant Mol. Biol. Rep. 26: 137–146.

    Google Scholar 

  • Fuller, R.S. 1998. Kexin. In: A.J. Barrett, N.D. Rawlings, and J.F. Woessher (Eds.) Handbook of Proteolytic Enzymes, Academic Press, New York, (CD-ROM), chapter 115.

    Google Scholar 

  • Gan, S. and Amasino, R.M. 1995. Inhibition of leaf senescence by autoregulated production of cytokinin. Science 270: 1986–1988.

    Google Scholar 

  • Garbarino, J.E. and Belknap, W.R. 1994. Isolation of a ubiquitinribosomal protein gene (ubi3) from potato and expression of its promoter in transgenic plants. Plant Mol. Biol. 24: 119–127.

    Google Scholar 

  • Genschik, P., Durr, A. and Fleck, J. 1994. Differential expression of several E2-type ubiquitin carrier protein genes at different developmental stages in Arabidopsis thaliana and Nicotiana sylvestris. Mol. Gen. Genet. 244: 548–556.

    Google Scholar 

  • Genschik, P., Philipps, G., Gigot, C. and Fleck, J. 1992. Cloning and sequence analysis of a cDNA clone from Arabidopsis thaliana homologous to a proteasome α subunit from Drosophila. FEBS Lett. 309: 311–315.

    Google Scholar 

  • Glathe, S., Kervinen, J., Nimtz, M., Li, G.H., Tobin, G.J., Copeland, T.D., Ashford, D.A., Wlodawer, A. and Costa, J. 1998. Transport and activation of the vacuolar aspartic proteinase phytepsin in barley (Hordeum vulgare L.). J. Biol. Chem. 273: 31230–31236.

    Google Scholar 

  • Graham, J.S., Xiong, J. and Gillikin, J.W. 1991. Purification and developmental analysis of a metalloendoproteinase from the leaves of Glycine max. Plant Physiol. 97: 786–792.

    Google Scholar 

  • Granell, A. 1998. Plant cysteine proteinases in germination and senescence. In: A.J. Barrett, N.D. Rawlings and J.F. Woessner (Eds.) Handbook of Proteolytic Enzymes, Academic Press, New York (CD-ROM), Chapter 199.

    Google Scholar 

  • Granell, A., Harris, N., Pisabarro, A.G. and Carbonell, J. 1992. Temporal and spatial expression of a thiolprotease gene during pea ovary senescence, and its regulation by gibberellin. Plant J. 2: 907–915.

    Google Scholar 

  • Greenberg, A.H. 1996. Activation of apoptosis pathways by granzyme B. Cell Death Differ. 3: 269–274.

    Google Scholar 

  • Griffiths, C.M., Hosken, S.E., Oliver, D., Chojecki, J. and Thomas, H. 1997. Sequencing, expression pattern and RFLP mapping of a senescence-enhanced cDNA from Zea mays with high homology to oryzain and aleurain. Plant Mol. Biol. 34: 815–821.

    Google Scholar 

  • Grimm, L.M., Goldberg, A.L., Poirier, G.G., Schwartz, L.M. and Osborne, B.A. 1996. Proteasomes play an essential role in thymocyte apoptosis. EMBO J. 15: 3835–3844.

    Google Scholar 

  • Grimm, L.M. and Osborne, B.A. 1999. Apoptosis and the proteasome. Res. Probl. Cell Differ. 23: 209–228.

    Google Scholar 

  • Groover, A. and Jones, A.M. 1999. Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol. 119: 375–384.

    Google Scholar 

  • Groves, M.R., Coulomber, R., Jenkins, J. and Cygler, M. 1998. Structural basis for specificity of papain-like cysteine protease proregions toward their cognate enzymes. Prot. Struct. Funct. Genet. 32: 504–514.

    Google Scholar 

  • Gubler, F., Raventos, D., Keys, M., Watts, R., Mundy, J. and Jacobsen, J.V. 1999. Target genes and regulatory domains in the GAMYB transcriptional activator in cereal aleurone. Plant J. 17: 1–9.

    Google Scholar 

  • Guerrero, C., de la Calle, M., Reid, M.S. and Valpuesta, V. 1998. Analysis of the expression of two thiolprotease genes from daylily (Hemerocallis spp.) during flower senescence. Plant Mol. Biol. 36: 565–571.

    Google Scholar 

  • Haas, A.L., Baboshina, O., Williams, B. and Schwartz, L.M. 1995. Coordinated induction of the ubiquitin conjugation pathway accompanies the developmentally programmed death of insect skeletal muscle. J. Biol. Chem. 270: 9407–9412.

    Google Scholar 

  • Herrmann, J.L., Briones, J., F., Brisbay, S., Logothetis, C.J. and Mc-Donnell, T.J. 1998. Prostate carcinoma cell death resulting from inhibition of proteasome activity is independent of functional Bcl-2 and p53. Oncogene 17: 2889–2899.

    Google Scholar 

  • Holwerda, B.C., Galvin, N.J., Baranski, T.J. and Rogers, J.C. 1990. In vitro processing of aleurain. A barley vacuolar thiol protease. Plant Cell 2: 1091–1106.

    Google Scholar 

  • Holwerda, B.C., Padgett, H.S. and Rogers, J.C. 1992. Proaleurain vacuolar targeting is mediated by short contiguous peptide interactions. Plant Cell 4: 307–318.

    Google Scholar 

  • Ishikawa, A., Ohta, S., Matsuoka, K., Hattori, T. and Nakamura, K. 1994. A family of potato genes that encode Kunitz-type proteinase inhibitors: structural comparisons and differential expression. Plant Cell Physiol. 35: 303.

    Google Scholar 

  • Jones, A.M. and Herman, E.M. 1993. KDEL-containing auxinbinding protein is secreted to the plasma membrane and the cell wall. Plant Physiol. 101: 595–606.

    Google Scholar 

  • Jones, J.T. and Mullet, J.E. 1995. A salt-and dehydration-inducible pea gene, cyp15a, encodes a cell-wall protein with sequence similarity to cysteine proteases. Plant Mol. Biol. 28: 1055–1065.

    Google Scholar 

  • Jones, M.E., Haire, M.F., Kloetzel, P.M., Mykles, D.L. and Schwartz, L.M. 1995a. Changes in the structure and function of the muticatalytic proteinase (proteasome) during programmed cell death in the intersegmental muscles of the hawkmoth, Manduca sexta. Dev. Biol. 169: 436–447.

    Google Scholar 

  • Jones, M.L., Larsen, P.B. and Woodson, W.R. 1995b. Ethyleneregulated expression of a carnation cysteine proteinase during flower petal senescence. Plant Mol. Biol. 28: 505–512.

    Google Scholar 

  • Jorda, L., Coego, A., Conejero, V. and Vera, P. 1999. A genomic cluster containing four differentially regulated subtilisin-like processing protease genes is in tomato plants. J Biol. Chem. 274: 2360–2365.

    Google Scholar 

  • Jordan, F., Hu, Z. and Haghjoo, K. 1995. Interaction of subtilisin with its pro-sequence: versatility of an N-terminal extension. In: U. Shinde and I. Masayor (Eds.) Intramolecular Chaperones and Protein Folding, Springer-Verlag, New York, pp. 113–144.

    Google Scholar 

  • Kardailsky, I.V. and Brewin, N.J. 1996. Expression of cysteine protease genes in pea nodule development and senescence. Mol. Plant-Microbe Interact. 9: 689–695.

    Google Scholar 

  • Karrer, K.M., Peiffer, S.L. and DiToms, M.E. 1993. Two distinct gene subfamilies within the family of cysteine protease genes. Proc. Natl. Acad. Sci. USA 90: 3063–3067.

    Google Scholar 

  • Kato, H. and Minamikawa, T. 1996. Identification and characterization of a rice cysteine endopeptidase that digests glutelin. Eur. J. Biochem. 239: 310–316.

    Google Scholar 

  • Kervinen, J. 1995. Structure and possible function of aspartic proteinases in barley and other plants. In: K. Takahashi (Ed.) Advances in Experimental Medicine and Biology, Plenum, New York, pp. 241–254.

    Google Scholar 

  • Kervinen, J., Sarkkinen, P., Kalkkinen, N., Mikola, L. and Saamara, M. 1993. Hydrolytic specificity of the barley grain aspartic proteinase. Phytochemistry 32: 799–803.

    Google Scholar 

  • Kervinen, J., Tobin, G.J., Costa, J., Waugh, D.S., Wlodawer, A. and Zdanov, A. 1999. Crystal structure of plant aspartic proteinase prophytepsin: inactivation and vacuolar targeting. EMBO J. 18: 3947–3955.

    Google Scholar 

  • Kinal, H., Park, C., Berry, J.O., Koltin, Y. and Bruenn, J.A. 1995. Processing and secretion of a virally encoded antifungal toxin in transgenic tobacco plants: evidence for a Kex2p pathway in plants. Plant Cell 7: 677–688.

    Google Scholar 

  • Kitagawa, H., Tani, E., Ikemoto, H., Azaki, I., Nakano, A. and Omura, S. 1999. Proteasome inhibitors induce mitochondriaindependent apoptosis in human glioma cells. FEBS Lett. 443: 181–186.

    Google Scholar 

  • Kobayashi, T., Kobayashi, E., Sato, S., Hotta, Y., Miyajima, N., Tanaka, A. and Tabata, S. 1994. Characterization of cDNAs induced in meiotic prophase in lily microsporocytes. DNA Res. 1: 15–26.

    Google Scholar 

  • Koehler, S. and Ho, T.D. 1988. Purification and characterization of gibberellic acid-induced cysteine endoproteases in barley aleurone layers. Plant Physiol. 87: 95–103.

    Google Scholar 

  • Koehler, S.M. and Ho, T.D. 1990. A major gibberellic acid-induced barley aleurone cysteine proteinase which digests hordein. Plant Physiol. 94: 251–258.

    Google Scholar 

  • Koiwa, H., Shade, R.E., Zhu-Salzman, K., Subramanian, L., Murdock, L.L., Nielsen, S.S., Bressan, R.A. and Hasegawa, P.M. 1998. Phage display selection can differentiate insecticidal activity of soybean cystatins. Plant J. 14: 371–379.

    Google Scholar 

  • Koizumi, M., Yamaguchi-Shinozaki, K., Tsuji, H. and Shinozaki, K. 1993. Structure and expression of two genes that encode distinct drought-inducible cysteine proteinases in Arabidopsis thaliana. Gene 129: 175–182.

    Google Scholar 

  • Koltunow, A.M., Truettner, J., Cox, K.H., Wallroth, M. and Goldberg, R.B. 1990. Different temporal and spatial gene expression patterns occur during anther development. Plant Cell 2: 1201–1224.

    Google Scholar 

  • Kosslak, R.M., Chamberlin, M.A., Palmer, R.G. and Bowen, B.A. 1997. Programmed cell death in the root cortex of soybean root necrosis mutants. Plant J. 11: 729–745.

    Google Scholar 

  • Kreft, S., Ravnikar, M., Mesko, P., Pungercar, J., Umek, A., Kregar, I. and Strukelj, B. 1997. Jasmonic acid inducible aspartic proteinase inhibitors from potato. Phytochemistry 44: 1001–1006.

    Google Scholar 

  • Lam, E. and del Pozo, O. 2000. Caspase-like protease involvement in the control of plant cell death. Plant Mol. Biol., this issue.

  • Lefebvre, O., Wolf, C., Limacher, J.-M., Pascal, H., Wendling, C., LeMeur, M., Basset, P. and Rio, M.-C. 1992. The breast cancer-associated stromelysin-3 gene is expressed during mouse mammary gland apoptosis. J. Cell Biol. 119: 997–1002.

    Google Scholar 

  • Levine, A., Pennell, R.I., Alvarez, M.E., Palmer, R. and Lamb, C. 1996. Calcium-mediated apoptosis in a plant hypersensitive disease resistance response. Curr. Biol. 6: 427–437.

    Google Scholar 

  • Li, Y.Q., Southworth, D., Linskens, H.F., Mulcahy, D.L. and Cresti, M. 1995. Localization of ubiquitin in anthers and pistils of Nicotiana. Sex. Plant Reprod. 8: 123–128.

    Google Scholar 

  • Lin, E., Burns, D.J. and Gardner, R.C. 1993. Fruit development regulation of the kiwifruit actinidin promoter is conserved in transgenic petunia plants. Plant Mol. Biol. 23: 489–499.

    Google Scholar 

  • Lin, K.I., Baraban, J.M. and Ratan, R.R. 1998. Inhibition versus induction of apoptosis by proteasome inhibitors depends on concentration. Cell Death Differ. 5: 577–583.

    Google Scholar 

  • Lindahl, M., Tabak, S., Cseke, L., Pichersky, E., Andersson, B. and Adam, Z. 1996. Identification, characterization and molecular cloning of a homologue of the bacterial FtsH protease in chloroplasts of higher plants. J. Biol. Chem. 271: 29329–29334.

    Google Scholar 

  • Linnestad, C., Doan, D.N.P., Brown, R.C., Lemmon, B.E., Meyer, D.J., Jung, R. and Olsen, O. 1998. Nucellain, a barley homolog of the dicot vacuolar-processing protease, is localized in nucellar cell walls. Plant Physiol. 118: 1169–1180.

    Google Scholar 

  • Liu, C.Y., Xu, H. and Graham, J.S. 1998. Cloning and characterization of an Arabidopsis thaliana cDNA homologous to the matrix metalloproteinases. Plant Physiol. 117: 1127.

    Google Scholar 

  • Lohman, K.N., Gan, S., John, M.C. and Amasino, R.M. 1994. Molecular analysis of natural leaf senescence in Arabidopsis thaliana. Physiol. Plant. 92: 322–328.

    Google Scholar 

  • Lowe, J., Stock, D., Jap, B., Zwickl, P., Baumeister, W. and Huber, R. 1995. Crystal structure of the 20S proteasome from the archaeon T. acidophilum at 3.4 Å resolution. Science 268: 533–539.

    Google Scholar 

  • Lund, L.R., Romer, J., Thomasset, N., Solberg, H., Pyke, C., Bissell, M.J., Dano, K. and Werb, Z. 1996. Two distinct phases of apoptosis in mammary gland involution: proteinase-independent and-dependent pathways. Development 122: 181–193.

    Google Scholar 

  • Mach, L., Mort, J.S. and Glossl, J. 1994. Noncovalent complexes between the lysosomal proteinase cathepsin B and its propeptide account for stable, extracellular, high molecular mass forms of the enzyme. J. Biol. Chem. 269: 13036–13040.

    Google Scholar 

  • Maganja, D.B., Strukelj, B., Pungercar, J., Gubensek, F., Turk, V. and Kregar, I. 1992. Isolation and sequence analysis of the genomic DNA fragment encoding an aspartic proteinase inhibitor homolog from potato (Solanum tuberosum L.). Plant Mol. Biol. 20: 311–313.

    Google Scholar 

  • Marthinuss, J., Andrade-Gordon, P. and Seiberg, M. 1995. A secreted serine protease can induce apoptosis in Pam212 keratinocytes. Cell Growth Diff. 6: 807–816.

    Google Scholar 

  • Marttila, S., Jones, B.L. and Mikkonen, A. 1995. Differential localization of two acid proteinases in germinating barley (Hordeum vulgare) seed. Physiol. Plant 93: 317–327.

    Google Scholar 

  • Marty, F., Branton, D. and Leigh, R.A. 1980. Plant vacuoles. In: N.E. Tolbert (Ed.) The Biochemistry of Plants, Academic Press, New York, pp. 625–658.

    Google Scholar 

  • Masdehors, P., Omura, S., Merle-Beral, H., Mentz, F., Cosset, J.-M., Dumont, J., Magdelenat, H. and Delic, J. 1999. Increased sensitivity of CLL-derived lymphocytes to apoptotic death acitvation by the proteasome-specific inhibitor lactacystin. Br. J. Haematol. 105: 752–757.

    Google Scholar 

  • Matile, P. 1978. Biochemistry and function of vacuoles. Annu. Rev. Plant Physiol. 29: 193–213.

    Google Scholar 

  • McGeehan, G., Burkhart, W., Anderegg, R., Becherer, J.D., Gilikin, J.W. and Graham, J.S. 1992. Sequencing and characterization of the soybean leaf metalloproteinase. Plant Physiol. 99: 1179–1183.

    Google Scholar 

  • Meichtry, J., Amrhein, N. and Schaller, A. 1999. Charazterization of the subtilase gene family in tomato (Lycopersicon esculentum Mill. ). Plant Mol. Biol. 39: 749–760.

    Google Scholar 

  • Menard, R. and Storer, A.C. 1998. Papain. In: A.J. Barrett, N.D. Rawlings and J.F. Woessner (Eds.) Handbook of Proteolytic Enzymes, Academic Press. New York (CD-ROM), Chapter 187.

    Google Scholar 

  • Meriin, A.B., Gabai, A.L., Yaglom, J., Shifrin, V.I. and Sherman, M.Y. 1998. Proteasome inhibitors activate stress kinases and induce hsp72. Diverse effects on apoptosis. J. Biol. Chem. 273: 6373–6379.

    Google Scholar 

  • Minami, A. and Fukuda, H. 1995. Transient and specific expression of a cysteine endoproteinase associated with autolysis during differentiation of Zinnia mesophyll cells into tracheary elements. Plant Cell Physiol. 36: 1599–1606.

    Google Scholar 

  • Mikkonen, A., Porali, I., Cercos, M. and Ho, T.D. 1996. A major cysteine proteinase, EPB, in germinating barley seeds: structure of the two intronless genes and regulation of expression. Plant Mol. Biol. 31: 239–254.

    Google Scholar 

  • Mitsuhashi, W. and Minamikawa, T. 1989. Synthesis and posttranslational activation of sulfhydryl-endopeptidase in cotyledons of germinating Vigna mugo seeds. Plant Physiol. 89: 274–279.

    Google Scholar 

  • Moriyasu, Y. and Ohsumi, Y. 1996. Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol. 111: 1233–1241.

    Google Scholar 

  • Murakami, Y., Matsufuji, S., Kameji, T., Hayashi, S., Igarashi, K., Tamura, T., Tanaka, K. and Ichihara, A. 1992. Ornithine decarboxylase is degraded by the 26S proteasome without ubiquitination. Nature 360: 597–599.

    Google Scholar 

  • Muzio, M. 1998. Signalling by proteolysis: death receptors induce apoptosis. Int. J. Clin. Lab. Res. 28: 141–147.

    Google Scholar 

  • Nadeau, J.A., Zhang, X.S., Li, J. and O'Neill, S.D. 1996. Ovule development: identification of stage-specific and tissue-specific cDNAs. Plant Cell 8: 213–239.

    Google Scholar 

  • Navarre, D.A. and Wolpert, T.J. 1999. Victorin induction of an apoptotic/senescence-like response in oats. Plant Cell 11: 237–249.

    Google Scholar 

  • Neuteboom, L.W., Ng, J.M.Y., Kuyper, M., Clijesdale, O.R., Hooykaas, P.J.J. and van der Zaal, B.J. 1999. Isolation and characterization of cDNA clones corresponding with mRNAs that accumulate during auxin-induced lateral root formation. Plant Mol. Biol. 39: 273–287.

    Google Scholar 

  • Okamoto, T., Minamikawa, T., Edward, G. and Vakharia, V. 1999. Posttranslational removal of the carboxy-terminal KDEL of the cysteine protease SH-EP occurs prior to maturation of the enzyme. J. Biol. Chem. 274: 11390–11398.

    Google Scholar 

  • Omura, S., Fujimoto, T., Otoguro, K., Matsuzaki, K., Moriguchi, R., Tanaka, H. and Sasaki, Y. 1991. Lactacystin, a novel microbial metabolite, induces neuritogenesis of neuroblastoma cells. J. Antibiot. 44: 113–116.

    Google Scholar 

  • Orlowski, M., Cardozo, C. and Michaud, C. 1993. Evidence for the presence of five distinct proteolytic components in the pituitary multicatalytic proteinase complex. Properties of two components cleaving bonds on the carboxyl side of branched chain and small neutral amino acids. Biochemistry 32: 1563–1572.

    Google Scholar 

  • Orlowski, R.Z. 1999. The role of the ubiquitin-proteasome pathway in apoptosis. Cell Death Differ. 6: 303–313.

    Google Scholar 

  • Ostersetzer, O. and Adam, Z. 1997. Light-stimulated degradation of an unassembled Rieske FeS protein by a thylakoid-bound protease: the possible role of the FtsH protease. Plant Cell 9: 957–965.

    Google Scholar 

  • Pak, J.H., Liu, C.Y., Huangpu, J. and Graham, J.S. 1997. Construction and characterization of the soybean leaf metalloproteinase cDNA. FEBS Lett. 404: 283–288.

    Google Scholar 

  • Panavas, T., Pikla, A., Reid, P.D., Rubinstein, B. and Walker, E.L. 1999. Identification of senescence-associated genes from daylily petals. Plant Mol. Biol. 40: 237–248.

    Google Scholar 

  • Paris, N., Stanley, C.M., Jones, R.L. and Rogers, J.C. 1996. Plant cells contain two functionally distinct vacuolar compartments. Cell 85: 563–572.

    Google Scholar 

  • Paul, W., Amiss, J., Try, R., Praekelt, U., Scott, R. and Smith, H. 1995. Correct processing of the kiwifruit protease actinidin in transgenic tobacco requires the presence of the C-terminal propeptide. Plant Physiol. 108: 261–268.

    Google Scholar 

  • Ragster, L.V. and Chrispeels, M.J. 1979. Azocoll digesting proteinases in soybean leaves: characteristics and changes during leaf maturation and senescence. Plant Physiol. 64: 857–862.

    Google Scholar 

  • Ramalho-Santos, M., Pissarra, J., Verissimo, P., Pereira, S., Salema, R., Pires, E. and Faro, C. 1997. Cardosin A, an abundant aspartic proteinase, accumulates in protein storage vacuoles in the stigmatic papillae of Cynara cardunculus L. Planta 203: 204–212.

    Google Scholar 

  • Rawlings, N.D. and Barrett, A.J. 1999. MEROPS: the peptidase database. Nucl. Acids Res. 27: 325–331.

    Google Scholar 

  • Ribeiro, A., Akkermans, A.D.L., van Kammen, A., Bisseling, T. and Pawloski, K. 1995. A nodule-specific gene encoding a subtilisinlike protease is expressed in early stages of actinorhizal nodule development. Plant Cell 7: 785–794.

    Google Scholar 

  • Richter, S. and Lamppa, G.K. 1998. A chloroplast processing enzyme functions as the general stromal processing peptidase. Proc. Natl. Acad. Sci. USA 95: 7463–7468.

    Google Scholar 

  • Roberts, L.R., Adjei, P.N. and Gores, G.J. 1999. Cathepsins as effector proteases in hepatocyte apoptosis. Cell Biochem. Biophys. 30: 71–88.

    Google Scholar 

  • Rock, K.L., Gramm, C., Rothstein, L., Clark, K., Dick, L., Hwang, D. and Goldberg, A.L. 1994. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78: 761–771.

    Google Scholar 

  • Rodrigo, I., Vera, P., van Loon, L.C. and Conejero, V. 1991. Degradation of tobacco pathogenesis-related proteins in plants. Plant Physiol. 95: 616–622.

    Google Scholar 

  • Runeberg-Roos, P. and Saarma, M. 1998. Phytepsin, a barley vascular aspartic proteinase, is highly expressed during autolysis of developing tracheary elements and sieve cells. Plant J. 15: 139–145.

    Google Scholar 

  • Runeberg-Roos, P., Törmäkangas, K. and Östman, A. 1991. Primary structure of a barley-grain aspartic proteinase: a plant aspartic proteinase resembling mammalian cathespin D. Eur. J. Biochem. 202: 1021–1027.

    Google Scholar 

  • Runeberg-Roos, P., Kervinen, J., Kovaleva, V., Raikhel, N.V. and Gal, S. 1994. The aspartic proteinase of barley is a vacuolar enzyme that processes probarley lectin in vitro. Plant Physiol. 105: 321–329.

    Google Scholar 

  • Sadoul, R., Ferdandez, P.-A., Quiquerez, A.-L., Martinou, I., Maki, M., Schroter, M., Becherer, J.D., Irmler, M., Tschopp, J. and Martinou, J.-C. 1996. Involvement of the proteasome in the programmed cell death of NGF-deprived sympathetic neurons. EMBO J. 15: 3845–3852.

    Google Scholar 

  • Safadi, F., Mykles, D.L. and Reddy, A.S.N. 1997. Partial purification and characterization of a Ca2+-dependent proteinase from Arabidopsis roots. Arch. Biochem. Biophys. 348: 143–151.

    Google Scholar 

  • Saftig, P., Hetman, M., Schmahl, W., Weber, K., Heine, L., Mossmann, H., Koster, A., Hess, B., Evers, M., von Figura, K. and Peters, C. 1995. Mice deficient for the lysosomal proteinase cathespin D exhibit progressive atrophy of the intestinal mucosa and profound destruction of lymphoid cells. EMBO J. 14: 3599–3608.

    Google Scholar 

  • Sarkkinen, P., Kalkkinen, N., Tilgmann, C., Siuro, J., Kervinen, J. and Mikola, L. 1992. Aspartic proteinase from barley grains is related to mammalian lysosomal cathespin D. Planta 186: 317–323.

    Google Scholar 

  • Schaller, A. and Ryan, C.A. 1994. Identification of a 50-kDa systemin-binding protein in tomato plasma membranes having Kex2p-like properties. Proc. Natl. Acad. Sci. USA 91: 11802–11806.

    Google Scholar 

  • Schaller, A. and Ryan, C.A. 1996. Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein. Plant Mol. Biol. 31: 1073–1077.

    Google Scholar 

  • Schmid, M., Simpson, D., Kalousek, F. and Gietl, C. 1998. A cysteine endopeptidase with a C-terminal KDEL motif isolated from castor bean endosperm is a marker enzyme for the ricinosome, a putative lytic compartment. Planta 206: 466–475.

    Google Scholar 

  • Schwartz, L.M., Myer, A., Kosz, L., Engelstein, M. and Maier, C. 1990. Activation of polyubiquitin gene expression during developmentally programmed cell death. Neuron 5: 411–419.

    Google Scholar 

  • Seidah, N.G., Day, R., Marcinkiewica, M. and Chrétien, M. 1998. Precursor convertase: an evolutionarily ancient, cell-specific, combinatorial mechanism yielding diverse bioactive peptides and proteins. Ann. NY Acad. Sci. 839: 9–24.

    Google Scholar 

  • Shanklin, J., DeWitt, N.D. and Flanagan, J.M. 1995. The stroma of higher plant plastids contain ClpP and ClpC, functional homologs of Escherichia coli ClpP and ClpAl: an archetypal two-component ATP-dependent protease. Plant Cell 7: 1713–1722.

    Google Scholar 

  • Shimada, T., Hiraiwa, N., Nishimura, M. and Hara-Nishimura, I. 1994. Vacuolar processing enzyme of soybean that converts proproteins to the corresponding mature forms. Plant Cell Physiol. 35: 713–718.

    Google Scholar 

  • Shinde, U., Li, Y. and Inouye, M. 1995. The role of the N-terminal propeptide in mediating folding of subtilisin E. In: U. Shinde and M. Inouye (Eds.) Intramolecular Chaperones and Protein Folding, Springer-Verlag, New York, pp. 11–34.

    Google Scholar 

  • Shinohara, K., Tomioka, M., Nakano, H., Tone, S., Ito, H. and Kawashima, S. 1996. Apoptosis induction resulting from proteasome inhibition. Biochem. J. 317: 385–388.

    Google Scholar 

  • Shintani, A., Kato, H. and Minamikawa, T. 1997. Hormonal regulation of expression of two cysteine endopeptidase genes in rice seedlings. Plant Cell Physiol. 38: 1242–1248.

    Google Scholar 

  • Shirley, B.W. and Goodman, H.M. 1993. An Arabidopsis gene homologous to mammalian and insect genes encoding the largest proteasome subunit. Mol. Gen. Genet. 241: 586–594.

    Google Scholar 

  • Shutov, A.D. and Vaintraub, I.A. 1987. Degradation of storage proteins in germinating seeds. Phytochemistry 26: 1557–1566.

    Google Scholar 

  • Siezen, R.J. and Leunissen, J.A.M. 1997. Subtilases: the superfamily of subtilisin-like serine proteases. Protein Sci. 6: 501–523.

    Google Scholar 

  • Solomon, M., Belenghi, B., Delledonne, M., Menachem, E. and Levine, A. 1999. The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11: 431–443.

    Google Scholar 

  • Stack, M.S. and Gray, R.D. 1989. Comparison of vertebrate collagenase and gelatinase using a new fluorogenic substrate peptide. J. Biol. Chem. 264: 4277–4281.

    Google Scholar 

  • Stephenson, P. and Rubinstein, B. 1998. Characterization of proteolytic activity during senescence in daylilies. Physiol. Plant. 104: 463–473.

    Google Scholar 

  • Stephenson, P., Collins, B.A., Reid, P.D. and Rubinstein, B. 1996. Localization of ubiquitin to differentiating vascular tissues. Am. J. Bot. 83: 140–147.

    Google Scholar 

  • Stocker, W., Grams, F., Baumann, U., Reinemer, P., Gomis Ruth, F.-X., McKay, D.B. and Bode, W. 1995. The metzincins: topological and sequential relations between the astacins, asamalysins, serralysin and metrixins (collagenases) define a superfamily of zinc-peptidases. Protein Sci. 4: 823–840.

    Google Scholar 

  • Swanson, S.J., Bethke, P.C. and Jones, R.L. 1998. Barley aleurone cells contain two types of vacuoles: characterization of lytic organelles by use of fluorescent probes. Plant Cell 10: 685–698.

    Google Scholar 

  • Tao, K., Stearns, N.A., Dong, J., Wu, Q.L. and Sahagian, G.G. 1994. The proregion of cathepsin L is required for proper folding, stability, and ER exit. Arch. Biochem. Biophys. 311: 19–27.

    Google Scholar 

  • Taylor, A.A., Horsch, A., Rzepczyk, A., Hasenkampf, C.A. and Riggs, C.D. 1997. Maturation and secretion of a serine proteinase is associated with events of late microsporogenesis. Plant J. 12: 1261–1271.

    Google Scholar 

  • Thoma, S., Sullivan, M.L. and Vierstra, R.D. 1996. Members of two gene families encoding ubiquitin-conjugating enzymes, AtUBC1-3 and AtUBC4-6, from Arabidopsis thaliana are differentially expressed. Plant Mol. Biol. 31: 493–505.

    Google Scholar 

  • Thornberry, N.A., Rosen, A. and Nicholson, D.W. 1997. Control of apoptosis by proteases. Adv. Pharm. 41: 155–177.

    Google Scholar 

  • Tormakangas, K., Kervinen, J., Ostman, A. and Teeri, T. 1994. Tissue-specific localization of aspartic proteinase in developing and germinating barley grains. Planta 195: 116–125.

    Google Scholar 

  • Tornero, P., Conejero, V. and Vera, P. 1997. Identification of a new pathogen-induced member of the subtilisin-like processing protease family from plants. J Biol. Chem. 272: 14412–14419.

    Google Scholar 

  • Tornero, P., Mayda, E., Gomez, M.D., Canas, L., Conejero, V. and Vera, P. 1996. Characterization of LRP, a leucine-rich repeat (LRR) protein from tomato plants that is processed during pathogenesis. Plant J. 10: 315–330.

    Google Scholar 

  • Tranbarger, T.J. and Misra, S. 1996. Structure and expression of a developmentally regulated cDNA encoding a cysteine protease (pseudotzain) from Douglas fir. Gene 172: 221–226.

    Google Scholar 

  • Urwin, P.E., McPherson, M.J. and Atkinson, H.J. 1998. Enhanced transgenic plant resistance to nematodes by dual proteinase inhibitor constructs. Planta 204: 472–479.

    Google Scholar 

  • Valpuesta, V., Lange, N.E., Guerrero, C. and Reid, M.S. 1995. Up-regulation of a cysteine protease accompanies the ethyleneinsensitive senescence of daylily (Hemerocallis) flowers. Plant Mol. Biol. 28: 575–582.

    Google Scholar 

  • van Nocker, S., Deveraux, Q., Rechsteiner, M. and Vierstra, R.D. 1996. Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc. Natl. Acad. Sci. USA 93: 856–860.

    Google Scholar 

  • Varshavsky, A. 1997. The ubiquitin system. Trends. Biochem. Sci. 22: 383–387.

    Google Scholar 

  • Vierstra, R.D. 1996. Proteolysis in plants: mechanisms and functions. Plant Mol. Biol. 32: 275–302.

    Google Scholar 

  • Wang, H., Wu, H.M. and Cheung, A.Y. 1996. Pollination induces mRNA poly(A) tail-shortening and cell deterioration in flower transmitting tissue. Plant J. 9: 715–727.

    Google Scholar 

  • Watanabe, H., Abe, K., Emori, Y., Hosoyama, H. and Arai, S. 1991. Molecular cloning and gibberellin-induced expression of multiple cysteine proteinases of rice seeds (oryzains). J. Biol. Chem. 266: 16897–16902.

    Google Scholar 

  • Weaver, L.M., Froehlich, J.E. and Amasino, R.M. 1999. Chloroplast-targeted ERD1 protein declines but its mRNA increases during senescence in Arabidopsis. Plant Physiol. 119: 1209–1216.

    Google Scholar 

  • Werb, Z. 1997. ECMand cell surface proteolysis: regulating cellular ecology. Cell 91: 439–442.

    Google Scholar 

  • Wilk, S. and Orlowski, M. 1980. Cation-sensitive neutral endopeptidase: isolation and specificity of the bovine pituitary enzyme. J. Neurochem. 35: 172–1182.

    Google Scholar 

  • Wilkinson, K.D. 1997. Regulation of ubiquitin-dependent processes by deubiquitinating enzymes. FASEB J. 11: 1245–1256.

    Google Scholar 

  • Williams, J., Bulman, M., Huttly, A., Phillips, A. and Neill, S. 1994. Characterization of a cDNA from Arabidopsis thaliana encoding a potential thiol protease whose expression is induced independently by wilting and abscisic acid. Plant Mol. Biol. 25: 259–270.

    Google Scholar 

  • Woffenden, B.J., Freeman, T.B. and Beers, E.P. 1998. Proteasome inhibitors prevent tracheary element differentiation in Zinnia mesophyll cell cultures. Plant Physiol. 118: 419–430.

    Google Scholar 

  • Xu, F. and Chye, M. 1999. Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant J. 17: 321–327.

    Google Scholar 

  • Yamagata, H., Masuzawa, T., Nagaoka, Y., Ohnishi, T. and Iwasaki, T. 1994. Cucumisin, a serine protease from melon fruits, shares structural homology with subtilisin and is generated from a large precursor. J Biol. Chem. 269: 32725–32731.

    Google Scholar 

  • Yamauchi, D., Terasaki, Y., Okamoto, T. and Minamikawa, T. 1996. Promoter regions of cysteine endopeptidase genes from legumes confer germination-specific expression in transgenic tobacco seeds. Plant Mol. Biol. 30: 321–329.

    Google Scholar 

  • Ye, Z.-H. and Varner, J.E. 1996. Induction of cysteine and serine proteinases during xylogenesis in Zinnia elegans. Plant Mol. Biol. 30: 1233–1246.

    Google Scholar 

  • Young, T.E. and Gallie, D.R. 2000. Programmed cell death during endosperm development. Plant Mol. Biol., this issue.

  • Yuan, J., Shaham, S., Ledoux, S., Ellis, H.M. and Horvitz, H.R. 1993. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1α-converting enzyme. Cell 75: 641–652.

    Google Scholar 

  • Zhang, X.M., Lin, H., Chen, C. and Chen, B.D.-M. 1999. Inhibition of ubiquitin-proteasome pathway activates a caspase-3-like protease and induces Bcl-2 clavage in human M-07e leukaemic cells. Biochem. J. 340: 127–133.

    Google Scholar 

  • Zhao, C., Johnson, B.J., Kositsup, B. and Beers, E.P. 2000. Exploiting secondary growth in Arabidopsis. Construction of xylem and bark cDNA libraries and cloning of three xylem endopeptidases. Plant Physiol. 123: 1185–1196.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beers, E.P., Woffenden, B.J. & Zhao, C. Plant proteolytic enzymes: possible roles during programmed cell death. Plant Mol Biol 44, 399–415 (2000). https://doi.org/10.1023/A:1026556928624

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026556928624

Navigation