Skip to main content
Log in

The importance of integration and scale in the arbuscular mycorrhizal symbiosis

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

The arbuscular mycorrhizal (AM) fungus contributes to system processes and functions at various hierarchical organizational levels, through their establishment of linkages and feedbacks between whole-plants and nutrient cycles. Even though these fungal mediated feedbacks and linkages involve lower-organizational level processes (e.g. photo-assimilate partitioning, interfacial assimilate uptake and transport mechanisms, intraradical versus extraradical fungal growth), they influence higher-organizational scales that affect community and ecosystem behavior (e.g. whole-plant photosynthesis, biodiversity, nutrient and carbon cycling, soil structure). Hence, incorporating AM fungi into research directed at understanding many of the diverse environmental issues confronting society will require knowledge of how these fungi respond to or initiate changes in vegetation dynamics, soil fertility or both. Within the last few years, the rapid advancement in the development of analytical tools has increased the resolution by which we are able to quantify the mycorrhizal symbiosis. It is important that these tools are applied within a conceptual framework that is temporally and spatially relevant to fungus and host. Unfortunately, many of the studies being conducted on the mycorrhizal symbiosis at lower organizational scales are concerned with questions directed solely at understanding fungus or host without awareness of what the plant physiologist or ecologist needs for integrating the mycorrhizal association into larger organizational scales or process levels. We show by using the flow of C from plant-to-fungus-to-soil, that through thoughtful integration, we have the ability to bridge different organizational scales. Thus, an essential need of mycorrhizal research is not only to better integrate the various disciplines of mycorrhizal research, but also to identify those relevant links and scales needing further investigation for understanding the larger-organizational level responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott L K 1982 Comparative anatomy of vesicular-arbuscular mycorrhizas formed on subterranean clover. Aust. J. Bot. 30, 485–499.

    Google Scholar 

  • Abbott L K and Robson A D 1985 Formation of external hyphae in soil by four species of vesicular-arbuscular mycorrhizal fungi. New Phytol. 99, 245–255.

    Google Scholar 

  • Abbott L K, Robson A D and DeBoer D 1984 The effects of phosphorus on the formation of hyphae in soil by the vesiculararbuscular mycorrhizal fungus, Glomus fasculatum. New Phytol. 97, 437–446.

    CAS  Google Scholar 

  • Alexander T, Meier R, Toth R and Weber H C 1988 Dynamics of arbuscule development and the degeneration in mycorrhizae of Triticum aestivum L. and Avena sativa L. with reference to Zea mayes L. New Phytol. 110, 363–370.

    Google Scholar 

  • Alexander T, Toth R, Meier R and Weber H C 1989 Dynamics of arbuscular development and degeneration in onion, bean and tomato with reference to vesicular-arbuscular mycorrhizae in grasses. Can. J. Bot. 67, 2505–2513.

    Google Scholar 

  • Ames R N, Reid C P P, Porter L K and Cambardella C 1983 Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 95, 381–396.

    Google Scholar 

  • Azcó n R, Gomez M and Tobar R 1992 Effect of nitrogen source on growth, nutrition, photosynthetic rate and nitrogen metabolism of mycorrhizal and phosphorus-fertilized plants of Lactuca sativa L. New Phytol. 121, 227–234.

    Google Scholar 

  • Bago B, Donaire J P and Azcó n-Aguilar C 1997 ATPase activities of root microsomes from mycorrhizal sunflower (Helianthus annuus) and onion (Allium cepa) plants. New Phytol. 176, 305–311.

    Google Scholar 

  • Bago B, Pfeffer P E, Douds D D, Brouillette J, Bè card g and Shachar-Hill Y 1999 Carbon metabolism in spores of the arbuscular mycorrhizal fungus Glomus intraradices as revealed by nuclear magnetic resonance spectroscopy. Plant Physiol. 121, 263–271.

    PubMed  CAS  Google Scholar 

  • Baylis G T S 1975 The magnolioid mycorrhiza and mycotrophy in root systems derived from it. In Endomycorrhizas EDS. FS, Sanders, B, Mosse and PB, Tinker. pp 373–389. Academic Press, New York.

    Google Scholar 

  • Berta G, Fusconi A, Trotta A and Scannerini S 1990 Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 in the root system of Allium porrum L. New Phytol. 114, 207–215.

    Google Scholar 

  • Berta G, Fusconi A and Trotta A 1993 VA mycorrhizal infection and the morphology and function of root systems. Environ. Exp. Bot. 33, 159–173.

    Google Scholar 

  • Bever J D, Morton J B, Antonovic J and Schultz P A 1996 Host-dependent sporulation and species diversity of arbuscular mycorrhizal fungi in a mown grassland. J. Ecol. 84, 71–82.

    Google Scholar 

  • Boddington C L and Dodd J C 1998 A comparison of the development and metabolic activity of mycorrhizas formed by arbuscular mycorrhizal fungi from different genera on two tropical forage legumes. Mycorrhiza 8, 149–157.

    CAS  Google Scholar 

  • Boddington C L and Dodd J C 1999 Evidence that differences in phosphate metabolism in mycorrhizas formed by species of Glomus and Gigaspora might be related to their life-cycle strategies. New Phytol. 142, 531–538.

    Google Scholar 

  • Bonfante P, Faccio A, Perotto S and Schurbert A 1990 Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol. Res. 94, 157–165.

    Google Scholar 

  • Bonfante P and Perotto S 1995 Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol. 130, 3–21.

    Google Scholar 

  • Brown M S and Bethlenfalvay G J 1988 The Glycine-Glomus-Rhizobium symbiosis.VII. Photosynthetic nutrient-use effeciency in nodulated, mycorrhizal soybeans. Plant Physiol. 86, 1292–1297.

    PubMed  CAS  Google Scholar 

  • Brundrett M, Bougher N, Dell B, Grove T and Malajczuk N 1996 Working with Mycorrhizas in Forestry and Agriculture, ACIR Monograph 32.

  • Brundrett M and Kendrick B 1988 The mycorrhizal status, root anatomy and phenology of plants in a sugar maple forest. Can. J. Bot. 66, 1153–1173.

    Google Scholar 

  • Brundrett M and Kendrick B 1990 The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol. 114, 469–479.

    Google Scholar 

  • Burleigh S H 2000 Cloning genes expressed in the arbuscules of mycorrhizas. Plant Soil (this issue)

  • Burleigh S H and Harrison MJ 1997 A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesicular arbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant Mol. Biol. 34, 199–208.

    PubMed  CAS  Google Scholar 

  • Burleigh S H and Harrison M J 1999 The down-regulation of Mt4-like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol. 119, 241–248

    PubMed  CAS  Google Scholar 

  • Diaz S 1996 Effects of elevated CO2 at the community level mediated by root symbionts. Plant Soil 187, 309–320.

    CAS  Google Scholar 

  • Dickson, S and Kolesik P 1999 Visualisation of mycorrhizal fungal structures and quantification of their surface area and volume using laser scanning confocal microscopy. Mycorrhiza 9, 205–213.

    Google Scholar 

  • Dodd J C, Boddington C L, Rodriguez A, Gonzales-Chavez C and Mansur I 2000 Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera: Form, function and detection. Plant Soil (this issue).

  • Douds D D, Johnson C R and Koch K E 1988 Carbon cost of the fungal symbiont relative to net leaf P accumulation in a split-root VA mycorrhizal symbiosis. Plant Physiol. 86, 491–496.

    Article  PubMed  CAS  Google Scholar 

  • Douds D D, Pfeffer P E and Shachar-Hill Y 2000 Application of in vitro methods to study carbon uptake metabolism and transport by AM fungi. Plant Soil (this issue).

  • Drew M C and Saker L R 1984 Uptake and long-distance transport of phosphate, potassium and chloride in relation to internal ion concentrations in barley: Evidence of non-allosteric regulation. Planta 160, 500–507.

    CAS  Google Scholar 

  • Eissenstat D M 1997 Trade-offs in root form and function. In: Ecology in Agriculture, L Jackson ed. pp 173–199 San Diego.

  • Eissenstat D M, Graham J H, Syvertsen J P and Drouillard D L 1993 Carbon economy of sour orange in relation to mycorrhizal colonization and phosphorus status. Annals Bot.71, 1–10.

    CAS  Google Scholar 

  • Eissenstat D M and Yanai R D 1997 The ecology of root lifespan. Adv. Ecol. Res. 27, 1–60.

    Article  Google Scholar 

  • Fay P, Mitchell D T and Osborne B A 1996 Photosynthesis and nutrient-use efficiency of barley in response to low arbuscular mycorrhizal colonization and addition of phosphorus. New Phytol. 132, 425–433.

    CAS  Google Scholar 

  • Ferrol N, Barea J M and Azcó n-Aguilar C 2000 Molecular approaches to study plasma membrane H+-ATPases in arbuscular mycorrhizas. Plant Soil (this issue).

  • Friese C F and Allen MF 1991 The spread of VA mycorrhizal fungal hyphae in the soil: Inoculum types and external hyphal structure. Mycologia 83, 409–418.

    Google Scholar 

  • Fusconi A, Gnavi E, Trotta A and Berta G 1999 Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol. 142, 505–516.

    Google Scholar 

  • Gianinazzi-Pearson V 1996 Plant cell responses to arbuscular mycorrhizal fungi: Getting to the roots of the symbiosis. Plant Cell 8, 1871–1883.

    PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Smith S E, Gianinazzi S and Smith F A 1991 Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytol. 117, 61–74.

    CAS  Google Scholar 

  • Giovannetti M, Sbrana C and Logi C 2000 Microchambers and video-enhanced light microscopy for monitoring cellular events in living hyphae of arbuscular mycorrhizal fungi. Plant Soil (this issue).

  • Graham J H and Abbott L K 2000 Wheat responses to aggressive and non-aggressive arbuscular mycorrhizal fungi. Plant Soil 220, 207–218.

    CAS  Google Scholar 

  • Graham J H, Duncan L W and Eissenstat D M 1997 Carbohydrate allocation patterns in citrus genotypes as affected by phosphorus nutrition, mycorrhizal colonization and mycorrhizal dependency. New Phytol. 135, 335–343.

    CAS  Google Scholar 

  • Guggenberger G, Elliott E T, Frey S D, Six J and Paustian K 1999 Microbial contribution to the aggregation of a cultivated grassland soil amended with starch. Soil Biol. Biochem. 31, 407–419.

    CAS  Google Scholar 

  • Guttenberger M 2000 A rapid activity stain for arbuscules in vesicular-arbuscular mycorrhizas. Microscopic examination of living mycorrhizas. Plant Soil (this issue).

  • Harley J L 1975 Problems of mycotrophy. In Endomycorrhizas. Eds. FE, Sanders, B Mosse and PB Tinker. Pp 1–24. Academic Press, London.

    Google Scholar 

  • Harrison M J 1998 Development of the arbuscular mycorrhizal symbiosis. Current opinions in Plant Biol. 4, 360–365.

    Google Scholar 

  • Harrison M J and Van Buuren M L 1995 A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378, 626–629.

    PubMed  CAS  Google Scholar 

  • Hawkins H-J and George E 1999 Effect of plant nitrogen status on the contribution of arbuscular mycorrhizal hyphae to plant nitrogen uptake. Physiol. Plantarum 105, 694–700.

    CAS  Google Scholar 

  • Hawkins H-J, Johansen A and George E 2000 Uptake, uptake mechanisms, and transport of organic and inorganic nitrogen by arbuscular mycorrhizal fungi. Plant Soil (this issue).

  • Hayman D S 1974 Plant growth responses to vesicular-arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytol. 73, 71–80.

    Google Scholar 

  • Hepper C H 1983 The effect of nitrate and phosphate on the vesicular-arbuscular mycorrhizal infection of lettuce. New Phytol. 92, 389–399.

    Google Scholar 

  • Hetrick B A D, Kitt D G and Wilson G T 1988 Mycorrhizal dependency and growth habit of warm-season and cool-season tallgrass prairie plants. Can. J. Bot. 66, 1376–1380.

    Google Scholar 

  • Hetrick B A D, Wilson G W T, Gill B S and Cox T S 1993 Mycorrhizal dependence of modern wheat varieties and ancestors, a synthesis. Can. J. Bot. 71, 512–518.

    Google Scholar 

  • Hetrick B A D, Wilson GWT, Gill B S and Cox T S 1995 Chromosome location of mycorrhizal responsive genes in wheat. Can. J. Bot. 73, 891–897.

    Google Scholar 

  • Hetrick B A D, Wilson G W T and Todd T C 1992 Relationships of mycorrhizal symbiosis, rooting strategy and phenology among tallgrass prairie forbs. Can. J. Bot. 70, 1521–1528.

    Google Scholar 

  • Hodge A 1996 Impact of elevated CO2 on mycorrhizal associations and implications for plant growth. Biol. Fert. Soils 23, 388–398.

    CAS  Google Scholar 

  • Jacquot, E, Van Tuinen D, Gianinazzi S and Gianinazzi-Pearson V 2000 Monitoring species of arbuscular mycorrhizal fungi in planta and in soil by nested PCR: Application to the study of the impact of sewage sludge. Plant Soil (this issue).

  • Jakobsen I, Abbott L K and Robson A D 1992a External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120, 371–380.

    CAS  Google Scholar 

  • Jakobsen I, Abbott L K and Robson A D 1992b External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifo lium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol. 120, 509–516.

    CAS  Google Scholar 

  • Jakobsen I and Rosendahl L 1990 Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115, 77–83.

    Google Scholar 

  • Jastrow J D, Miller R M and Lussenhop J 1998 Contributions of interacting biological mechanisms to soil aggregate stabilization in restored prairie. Soil Biol. Biochem. 30, 905–916.

    CAS  Google Scholar 

  • Johansen A, Jakobsen I and Jensen E S 1992 Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol. 122, 281–288.

    CAS  Google Scholar 

  • Johansen A, Jakobsen I and Jensen E S 1993 External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 32P and 15N. New Phytol. 124, 61–68.

    CAS  Google Scholar 

  • Johansen A, Jakobsen I and Jensen E S 1994 Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil 160, 1–9.

    CAS  Google Scholar 

  • Johnson C R 1984 Phosphorus nutrition on mycorrhizal colonization, photosynthesis, growth and nutrient composition of Citrus auriantum. Plant Soil 80, 35–42.

    CAS  Google Scholar 

  • Kjø ller R and Rosendahl S 2000 Detection of arbuscular mycorrhizal fungi (Glomales) in roots by nested PCR and SSCP (single stranded conformation polymorphism). Plant Soil (this issue).

  • Kling M and Jakobsen I 1997 Direct application of carbendazim and propiconazole at field rates to the external mycelium of three arbuscular mycorrhizal fungal species: Effect on 32P transport and succinate dehydrogenase activity. Mycorrhiza 7, 33–37.

    CAS  Google Scholar 

  • Koch K E and Johnson C R 1984 Photosynthate partitioning in splitroot citrus seedlings with mycorrhizal and nonmycorrhizal root systems. Plant Physiol. 75, 26–30.

    PubMed  CAS  Google Scholar 

  • Kothari S K, Marschner H and Römheld V 1991 Contributions of the VA mycorrhizal hyphae in acquisition of phosphorus and zinc by maize grown in calcareous soil. Plant Soil 131, 177–185.

    CAS  Google Scholar 

  • Lambers H, Chapin F S and Pons T L 1998 Plant Physiological Ecology. Springer-Verlag, New York.

    Google Scholar 

  • Li X-L, G E and Marschner H 1991 Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol. 119, 397–404.

    CAS  Google Scholar 

  • Liu H, Trieu A T, Blaylock L A and Harrison M J 1998 Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol. Plant. Microbe Interact. 11, 14–22.

    PubMed  CAS  Google Scholar 

  • Mäder P, Viefheilig H, Alt M and Wiemken A 1993 Boundaries between soil compartments formed by microporous hydrophonic membranes (GORE-TEXR) can be crossed by vesiculararbuscular mycorrhizal fungi but not by ions in soil solution. Plant Soil 152, 201–206.

    Google Scholar 

  • Marschner H, Kirkby B A and Cakmak I 1996 Effects of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J. Exp. Bot. 47, 1255–1263.

    CAS  Google Scholar 

  • McAllister C A, Knapp A K and Maragni L A 1998 Is leaf-level photosynthesis related to plant success in a highly productive grassland? Oecologia 117, 40–46.

    Google Scholar 

  • Miller R M, Hetrick B A D and Wilson G W T 1997 Mycorrhizal fungi affect root stele tissue in grasses. Can. J. Bot. 75, 1778–1784.

    Google Scholar 

  • Miller R M and Jastrow J D 1990 Hierarchy of root and mycorrhizal fungal interactions with soil aggregation. Soil Bio. Biochem. 22, 579–584.

    Google Scholar 

  • Miller R M and Jastrow J D 1992a The role of mycorrhizal fungi in soil conservation. In: Mycorrhizae in Sustainable Agriculture. Eds. GJ Bethlenfalvay and RG Linderman. pp 29–44. ASA Special Publ. no. 54. Agron. Soc. Am., Crop Sci. Soc. Am. and Soil Sci. Soc. Am., Madison, WI.

    Google Scholar 

  • Miller R M and Jastrow J D 1992b Extraradical hyphal development of vesicular-arbuscular mycorrhizal fungi in a chronosequence of prairie restorations. In Mycorrhizas in Ecosystems. Eds. DJ Read, DH Lewis, AH Fiten and IJ Alexander pp 171–176. CAB International, Publ., Oxon, UK.

    Google Scholar 

  • Miller R M and Jastrow J D 2000 Mycorrhizal fungi influence soil structure. In: Arbuscular Mycorrhizae: Physiology and Function, Y Kapulnik and D D Douds, eds. Kluwer Academic Press (in press).

  • Miller R M, Reinhardt D R and Jastrow J D 1995 External hyphal production of vesicular-arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103, 17–23.

    Google Scholar 

  • Müller J, Mohr U, Sprenger N, Bortlik K, Boller T and Wiemken A 1999 Pool sizes of fructans in roots and leaves of mycorrhizal and non-mycorrhizal barley. New Phytol. 142, 551–559.

    Google Scholar 

  • Murphy P J, Langridge P and Smith S E 1997 Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 135, 291–301.

    CAS  Google Scholar 

  • O'Keefe D M and Sylvia DM 1992 Chronology and mechanisms of P uptake by mycorrhizal sweet potato plants. New Phytol. 122, 651–659.

    Google Scholar 

  • O'Neill E G, O'Neill R V and Norby R J 1991 Hierarchy theory as a guide to mycorrhizal research on large-scale problems. Environ. Pollu. 73, 271–284.

    Google Scholar 

  • Olsson P A, Thingstrup I, Jakobsen I and Bååth E 1999 Estimation of the biomass of arbuscular mycorrhizal fungi in a linseed field. Soil Biol. Biochem. 31, 1879–1887.

    CAS  Google Scholar 

  • Olsson P A and Wilhelmsson P 2000 The biomass of the external AM fungal mycelium in experimental systems and in field sand dunes. Plant Soil (this issue).

  • Pang P C and Paul E A 1980 Effects of vesicular-arbuscular mycorrhiza on 14C and 15N distribution in nodulated fababeans. Can. J. Soil Sci. 60, 241–250.

    Article  CAS  Google Scholar 

  • Pearson J N and Jakobsen I 1993 Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol. 124, 481–488.

    CAS  Google Scholar 

  • Peng S, Eissenstat D M, Graham J H, Williams K and Hodge N C 1993 Growth depression in mycorrhizal citrus at highphosphorus supply. Analysis of carbon costs. Plant Physiol. 101, 1063–1071.

    PubMed  CAS  Google Scholar 

  • Pfeffer P E, Douds D D, Bè card G and Shachar-Hill Y 1999 Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol. 120, 587–598.

    PubMed  CAS  Google Scholar 

  • Price N S, Roncadori RW and Hussey R S 1989 Cotton root growth as influenced by phosphorus nutrition and vesicular-arbuscular mycorrhizas. New Phytol. 111, 61–66.

    Google Scholar 

  • Rasmussen N, Lloyd D, Ratcliffe R G, Hansen P E and Jakobsen I 2000 31P NMR for the study of P metabolism and transolcation in arbuscular mycorrhizal fungi. Plant Soil (this issue).

  • Ravnskov S and Jakobsen I 1995 Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol. 129, 611–618.

    Google Scholar 

  • Read D J 1984 The structure and function of the vegetative mycelium of mycorrhizal fungi. In The Ecology and Physiology of the Fungal Mycelium. Eds. DH, Jennings and ADM Rayner pp. 215–240 Cambridge Univ Press.

  • Read D J 1991 Mycorrhizas in ecosystems - Nature's response to the 'Law of the Minimum'. In: Frontiers in Mycology. Ed. DL Hawksworth. CAB International, pp 101–130.

  • Reinhard S, Weber E, Martin P and Marschner H 1994 Influence of phosphorus supply and light intensity on mycorrhizal response in Pisum-Rhizobium-Glomus symbiosis. Experientia 50, 890–896.

    CAS  Google Scholar 

  • Reinhardt D R and Miller R M 1990 Size classes of root diameter and mycorrhizal fungal colonization in two temperate grassland communities. New Phytol. 116, 129–136.

    Google Scholar 

  • Rillig M C and Allen M F 1999 What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to elevated atmospheric CO2. Mycorrhiza 9, 1–8.

    Google Scholar 

  • Rillig M C, Field C B and Allen M F 1999 Soil biota responses to long-term atmosphere CO2 enrichment in two California annual grasslands. Oecologia 119, 572–577.

    Google Scholar 

  • Rosewarne G M, Barker S J, Smith S E, Smith F A and Schachtman D P 1999 A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesiculararbuscular mycorrhizal fungus. New Phytol. 144, 507–516.

    CAS  Google Scholar 

  • Sanders I R, Streitwolf-Engel R, Van der Heijden M G A, Boller T and Wiemken A 1998 Increased allocation to external hyphae of arbuscular mycorrhizal fungi under CO2 enrichment. Oecologia 117, 496–503.

    Google Scholar 

  • St-Arnaud M, Hamel C, Vimard B, Caron M and Fortin J A 1996 Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100, 328–332.

    Google Scholar 

  • St. John T V 1980 Root size, root hairs and mycorrhizal infection: A re-examination of Baylis's hypothesis with tropical trees. New Phytol. 84, 483–487.

    Google Scholar 

  • Schaffer G F and Peterson R L 1993 Modifications to clearing methods used in combination with vital staining of roots colonized with vesicular-arbuscular mycorrhizal fungi. Mycorrhiza 4, 29–35.

    Google Scholar 

  • Schweiger P and Jakobsen I 2000 Laboratory and field methods for measurement of hyphal uptake of nutrients in soil. Plant Soil (this issue).

  • Schwab S M, Menge J A and Tinker P B 1991 Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 117, 387–398.

    CAS  Google Scholar 

  • Shachar-Hill Y, Pfeffer P E, Douds D, Osman S F, Doner L W and Ratcliffe R G 1995 Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol. 108, 7–15.

    PubMed  CAS  Google Scholar 

  • Smith F A, Jakobsen I, and Smith S E 2000 Spatial differences in acquisition of soil phosphate between two abuscular mycorrhizal fungi in symbiosis with Medicago truncatula. New Phytol. 147, 357–366.

    Google Scholar 

  • Smith F A and Smith S E 1996 Mutualism and parasitism: diversity in function and structure in the 'arbuscular' (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22, 1–43.

    Google Scholar 

  • Smith F A and Smith S E 1997 Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol. 137, 373–388.

    Google Scholar 

  • Smith F W, Ealing P M, Dong B and Delhaize E 1997 The cloning of two Arabidopsis genes belonging to a phosphate teansporter family. Plant J. 11, 83–92.

    PubMed  CAS  Google Scholar 

  • Smith S E and Dickson S 1991 Quantification of active vesiculararbuscular mycorrhizal infection using image analysis and other techniques. Aust. J. Plant Physiol. 18, 637–648.

    Google Scholar 

  • Smith S E, Dickson S, Morris C and Smith F A 1994 Transfer of phosphate from fungus to plant in VA mycorrhizas: Calculation of the area of symbiotic interface and of fluxes of P from two different fungi to Allium porrum L. New Phytol. 127, 93–99.

    CAS  Google Scholar 

  • Smith S E and Gianinazzi-Pearson V 1990 Phosphate uptake and arbuscular activity in mycorrhizal Allium cepa L. Effects of photon irradiance and phosphate nutrition. Aust. J. Plant Physiol. 17, 177–188.

    Article  CAS  Google Scholar 

  • Smith S E and Read D J 1997 Mycorrhizal symbiosis. Academic Press, Inc., Cambridge.

    Google Scholar 

  • Smith S E, St. John B J, Smith F A and Bromley J-L 1986 Effects of mycorrhizal infection on plant growth, nitrogen and phosphorus nutrition in glasshouse-grown Allium cepa L. New Phytol. 103, 359–373.

    Google Scholar 

  • Smith S E and Smith F A 1990 Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol. 114, 1–38.

    CAS  Google Scholar 

  • Snellgrove R C, Splittstoesser W E, Stribley D P and Tinker P B 1982 The distribution of carbon and demand of the fungal symbiont in look plants with vesicular-arbuscular mycorrhizas. New Phytol. 92, 75–87.

    Google Scholar 

  • Solaiman M D K and Saito M 1997 Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol. 136, 533–538.

    CAS  Google Scholar 

  • Son C L and Smith S E 1988 Mycorrhizal growth responses: interactions between photon irradiance and phosphorus nutrition. New Phytol. 108, 305–314.

    Google Scholar 

  • Spank H P 1999 Knocking out nodules. Nature 402, 135–136.

    Google Scholar 

  • Staddon P L and Fitter A H 1998 Does elevated atmospheric carbon dioxide affect arbuscular mycorrhizas? Trends Ecol. Evol. 13, 455–458.

    Google Scholar 

  • Sylvia D M 1988 Spatial and temporal distribution of vesiculararbuscular mycorrhizal fungi associated with Uniola paniculata in Florida foredunes. Mycologia 78, 728–734.

    Google Scholar 

  • Sylvia D M and Neal L H 1990 Nitrogen affects the phosphorus response of va mycorrhiza. New Phytol. 115, 303–310.

    CAS  Google Scholar 

  • Taylor T N, Remy W, Hass H and Kerp H 1995 Fossil arbuscular mycorrhizae from the early Devonian. Mycologia 87, 560–573.

    Google Scholar 

  • Tester M, Smith S E, Smith F A and Walker N A 1986 Effects of photon irradiance on shoot and root growth, on rate of initiation of mycorrhizal infection and on the growth of infection units in Trifolium subterraneum L. New Phytol. 103, 375–390.

    Google Scholar 

  • Thomson B D, Robson A D and Abbott L K 1986 Effects of phosphorus on the formation of mycorrhizas by Gigaspora calospora and Glomus fasciculatum in relation to root carbohydrates. New Phytol. 103, 751–765.

    Google Scholar 

  • Tisdall J M and Oades J M 1980 The effect of crop rotation on aggregation in a red-brown earth. Aust. J. Soil Res. 18, 423–433.

    CAS  Google Scholar 

  • Tisdall J M and Oades J M 1982 Organic matter and water-stable aggregates in soils. J. Soil Sci. 33, 141–163.

    CAS  Google Scholar 

  • Tisserant B, Gianinazzi S and Gianinazzi-Pearson V 1996 Relationships between lateral root order, arbuscular mycorrhiza development and the physiological state of the symbiotic fungus in Platanus acerifolia. Can. J. Bot. 74, 1947–1955.

    Google Scholar 

  • Trent J D, Svejcar T J and Blank R R 1994 Mycorrhizal colonization, hyphal lengths and soil moisture associated with two Artemisia tridentata subspecies. Great Basin Nat. 54, 291–300.

    Google Scholar 

  • Van Aarle I M, Vosatka M and Joner E J 2000 Phosphatase activity of extra-radical arbuscular mycorrhizal hyphae: A review. Plant Soil (this issue).

  • Van der Heijden M G A, Boller T, Wiemken A and Sanders I R 1998a Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79, 2082–2091.

    Google Scholar 

  • Van der Heijden M G A, Klironomos J N, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A and Sanders I R 1998b Mycorrhizal fungal diversity determines plant biod309 iversity, ecosystem variability and productivity. Nature 396, 69–72.

    CAS  Google Scholar 

  • Wang G M, Coleman D C, Freckman D W, Dyer M I, McNaughton S J, Acra M A and Goeschl J D 1989 Carbon partitioning patterns of mycorrhizal versus non-mycorrhizal plants: Realtime dynamics measurements using 11CO2. New Phytol. 112, 489–493.

    Google Scholar 

  • Wardlaw I F 1990 The control of carbon partitioning in plants. New Phytol. 116, 341–381.

    CAS  Google Scholar 

  • Woodward I F 1992 Predicting plant responses to global environmental change. New Phytol. 122, 239–251.

    CAS  Google Scholar 

  • Wright D P, Read D J and Scholes J D 1998a Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ. 21, 881–891.

    Google Scholar 

  • Wright D P, Scholes J D and Read D J 1998b Effects of VA mycorrhizal colonization on photosynthesis and biomass production of Trifolium repens L. Plant Cell Environ. 21, 209–216.

    Google Scholar 

  • Wright S F 2000 A fluorescent antibody assay for hyphae and glomalin from arbuscular mycorrhizal fungi. Plant Soil (this issue).

  • Wright S F and Upadhyaya A 1996 Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161, 575–586.

    CAS  Google Scholar 

  • Yun W, Pratt S T, Miller R M, Cai Z, Hunter D B, Jarstfer A G, Kemner K M, Lai B, Lee H-R, Legnini D G, Rodrigues W and Smith C I 1998 X-ray imaging and microspectroscopy of plants and fungi. J. Synchrotron Radiation 5, 1390–1395.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The U.S. Government's right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, R., Kling, M. The importance of integration and scale in the arbuscular mycorrhizal symbiosis. Plant and Soil 226, 295–309 (2000). https://doi.org/10.1023/A:1026554608366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026554608366

Navigation