Skip to main content
Log in

Molecular Aspects of Intron Evolution in Dynein Encoding Mega-Genes on The Heterochromatic Y Chromosome of Drosophila sp.

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Fertility genes on the heterochromatic Y chromosome of various Drosophilaspecies are unique for several reasons. Most of them are megabase-sized. Their expression is restricted to premeiotic spermatocytes and often associated with unfolding of huge species-specific lampbrush loops. Molecular analysis of the orthologous dynein genes Dhc-Yh3, DhDhc7(Y)and DeDhc7(Y)on the Y chromosome of the three species D. melanogaster, D. hydeiand D. eohydei, respectively, revealed that the megabase gene size as well as the species-specific morphology of the corresponding lampbrush loops kl-5, Threadsand diffuse loopsresult from huge introns and their specific sequence composition, whereas the majority of all 20 introns in each of the three genes is in a size of 45–72 bp. The loop-specifying introns are extreme exceptions due to extended assemblies of degenerated transposable elements and/or large clusters of satellite DNAs. Here we use sequence information from the complete intron sets of three orthologous Y chromosomal dynein genes to deduce a scenario for an evolutionary pathway leading to the megabase-sized genes on the heterochromatic Y chromosome of Drosophila. The obvious bias between very small and species-specific mega introns is explained as the result of an autocatalytic mode of intron growth. An initial coincidental hit by a single transposable element extends the size of a 50 bp intron for about two orders of magnitude and determines it for preferential extension by similar insertion events. This phase of continuous moderate growth is followed by rapid size enlargements by repeating amplifications generating extended clusters of satellite DNA. Size control by recombination, on the other hand, is suppressed in Drosophilamales by achiasmatic meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arkhipova, I.R. & Y.V. Ilyn, 1992. Control of transcription of Drosophilaretrotransposons. BioEssays 14: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Bonaccorsi, S. & A. Lohe, 1991. Fine mapping of satellite DNA sequences along the Y chromosome of Drosophila melanogaster: Relationships between satellite sequences and fertility factors. Genetics 129: 177–189.

    PubMed  CAS  Google Scholar 

  • Britten, R.J. & D.E. Kohne, 1968. Repeated sequences in DNA. Science 161: 529–540.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., 1991. The evolution of sex chromosomes. Science 251: 1030–1033.

    PubMed  CAS  Google Scholar 

  • Charlesworth, B., P. Sniegowki & W. Stephan, 1994. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature 371: 215–220.

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth, B., C.H. Langley & W. Stephan, 1986. The evolution of restricted recombination and the accumulation of repeated DNA sequences. Genetics 112: 947–962.

    PubMed  CAS  Google Scholar 

  • Csink, A.K. & S. Henikoff, 1998. Something from nothing: the evolution and utility of satellite repeats. Trends Genet. 14: 200–204.

    Article  PubMed  CAS  Google Scholar 

  • Davis, M.B., J. Dietz, D.M. Standiford & C.P. Emerson, Jr., 1998. Transposable element insertions respecify alternative splicing in three Drosophilamyosin heavy chain mutants. Genetics 150: 1105–1114.

    PubMed  CAS  Google Scholar 

  • Diaz, M.O. & J.G. Gall, 1985. Giant readthrough transcription units at the histone loci on lampbrush chromosomes of the newt Notophthalmus. Chromosoma 92: 243–253.

    Article  PubMed  CAS  Google Scholar 

  • Dorer, D.R. & S. Henikoff, 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002.

    Article  PubMed  CAS  Google Scholar 

  • Eberl, D.F., B.J. Duyf & A.J. Hilliker, 1993. The role of heterochromatin in the expression of a heterochromatic gene, the rolledlocus of Drosophila melanogaster. Genetics 134: 277–292.

    PubMed  CAS  Google Scholar 

  • Gall, J. & H.G. Callan, 1989. The sphere organelle contains small nuclear riboproteins. Proc. Natl. Acad. Sci. USA 86: 6635–6639.

    Article  PubMed  CAS  Google Scholar 

  • Gatti, M. & S. Pimpinelli, 1983. Cytological and genetic analysis of the Y chromosome of Drosophila melanogaster. I. Organization of the fertility factors. Chromosoma 88: 349–373.

    Article  Google Scholar 

  • Gepner, J. & T.S. Hays, 1993. A fertility region on the Y chromosome of Drosophila melanogasterencodes a dynein microtuble motor. Proc. Natl. Acad. Sci. USA 90: 11132–11136.

    Article  PubMed  CAS  Google Scholar 

  • Glätzer, K.H., 1984. Preservation of nuclear RNP antigens in male germ cell development in D. hydei. Mol. Gen. Genet. 196: 236–243.

    Article  Google Scholar 

  • Glätzer, K.H. & G.F. Meyer, 1981. Morphological aspects of the genetic activity in primary spermatocyte nuclei of Drosophila hydei. Biol. Cell 41: 165–172.

    Google Scholar 

  • Goldstein, L.S.B., R.W. Hardy & D.L. Lindsley, 1982. Structural genes in the Y chromosome of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA. 79: 7405–7409.

    Article  PubMed  CAS  Google Scholar 

  • Grond, C.J., I. Siegmund & W. Hennig, 1983. Visualization of a lampbrush loop-forming fertility gene in Drosophila hydei. Chromosoma 88: 50–56.

    Article  CAS  Google Scholar 

  • Hackstein, J.H.P., K.H. Glätzer & T.J.M. Hulsebos, 1991. Genetic and cytogenetic analysis of the ‘Th-Ps’ region of the Y chromosome of Drosophila hydei: evidence for dual function of the loop-forming fertility genes? Mol. Gen. Genet. 227: 293–305.

    Article  PubMed  CAS  Google Scholar 

  • Hackstein, J.H.P. & R. Hochstenbach, 1995. The elusive fertility genes of Drosophila: the ultimate haven for selfish genetic elements. Trends Genet. 11: 195–200.

    Article  PubMed  CAS  Google Scholar 

  • Hackstein, J.H.P., R. Hochstenbach, E. Hauschteck-Jungen & W. Beukeboom, 1996. Is the Y chromosome of Drosophilaan evolved supernumary chromosome? BioEssays 18: 317–323.

    Article  PubMed  CAS  Google Scholar 

  • Hackstein, J.H.P., O. Leoncini, H. Beck, G. Peelen & W. Hennig, 1982. Genetic fine structure of the Y Chromosome of Drosophila hydei. Genetics 101: 257–277.

    PubMed  CAS  Google Scholar 

  • Hardy, R.W., K.T. Tokuyasu & D.L. Lindsley, 1981. Analysis of spermatogenesis in Drosophila melanogasterbearing deletions for Y-chromosome fertility genes. Chromosoma 83: 593–617.

    Article  PubMed  CAS  Google Scholar 

  • Hareven, D., M. Zuckermann & E. Lifschytz, 1986. Origin and evolution of the transcribed repeated sequences of the Y chromosome lampbrush loops of Drosophila hydei. Proc. Natl. Acad. Sci. USA 83: 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Hennig, W., R.C. Brand, J.H.P. Hackstein, R. Hochstenbach, H. Kremer, D.H. Lankenau, S. Lankenau, K. Miedema & A. Pötgens, 1989. Y chromosomal fertility genes of Drosophila: a new type of eukaryotic genes. Genome 31: 561–571.

    PubMed  CAS  Google Scholar 

  • Hess, O., 1966. Structural modifications of the Y-chromosome in Drosophila hydeiand their relation to gene activity, pp. 167–173, in Chromosome Today, edited by C.D. Darlington, and K.R. Lewis Vol. 1, Oliver & Boyd, Edinburgh.

    Google Scholar 

  • Hochstenbach, R., H. Harhangi, K. Schouren, P. Bindels, R. Suijkerbuijk & W. Hennig, 1996. Transcription of gypsyelements in a Y-chromosome male fertility gene of Drosophila hydei. Genetics 142: 437–446.

    PubMed  CAS  Google Scholar 

  • Hochstenbach, R., M. Knops & W. Hennig, 1994. Discrimination of related transcribed and non-transcribed repetitive DNA sequences from the Y chromosomes of Drosophila hydeiand Drosophila eohydei. Mol. Gen. Genet. 234: 54–62.

    Article  Google Scholar 

  • Huijser, P. & W. Hennig, 1987. Ribosomal DNA-related sequences in a Y chromosomal lampbrush loop of Drosophila hydei. Mol. Gen. Genet. 260: 441–451.

    Article  Google Scholar 

  • Huijser, P., W. Hennig & R. Dijkhof, 1987. Poly(dC-dA/dG-dT) repeats in the Drosophilagenome: a key function for dosage compenstion and position effects? Chromosoma 95: 209–215.

    Article  CAS  Google Scholar 

  • Kremer, H., W. Hennig & R. Dijkhof, 1986. Chromatin organization in the male germ line of Drosophila hydei. Chromosoma94: 147–161.

    Article  Google Scholar 

  • Kurek, R., P. Trapitz, P. & H. Bünemann, 1996. ‘Strukturdifferenzierungen im Y-Chromosom von Drosophila hydei': The unique morphology of the Y chromosomal lampbrush loops Threadsresults from coaxial shells formed by different satellite-specific subregions within megabase-sized transcripts. Chromosome Res. 4: 87–102.

    Article  PubMed  CAS  Google Scholar 

  • Kurek, R., A. Reugels, K.H. Glätzer & H. Bünemann, 1998. The Y chromosomal fertility factor Threadsin Drosophila hydeiharbors a functional gene encoding an axonemal dynein β heavy chain protein. Genetics 149: 1363–1376.

    PubMed  CAS  Google Scholar 

  • Lajoinie, O., M.E. Drake, B. Dastugue & C. Vaury, 1995. Aberrant pre-mRNA maturation is caused by LINE insertions into introns of the whitegene of Drosophila melanogaster. Nucl. Acids Res. 23: 4015–4022.

    PubMed  CAS  Google Scholar 

  • Lankenau, S., V.G. Corces & D.H. Lankenau, 1994. The Drosophila micropiaretrotransposon encodes a testis specific antisense RNA complementary to reverse transcriptase. Mol. Cell Biol. 14: 1764–1775.

    PubMed  CAS  Google Scholar 

  • LeMaire, M.F. & C.S. Thummel, 1990. Splicing precedes polyadenylation during DrosophilaE74A transcription. Mol. Cell. Biol. 10: 6059–6063

    PubMed  CAS  Google Scholar 

  • Lifschytz, E., D. Hareven, A. Azriel & H. Brodsley, 1983. DNA clones and RNA transcripts of four lampbrush loops from the Y chromosome of Drosophila hydei. Cell 32: 191–192.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R. & A.J. Hilliker, 1995. Return of the H-word (heterochromatin) Curr. Opin. Genet. & Dev. 5: 746–755.

    Article  CAS  Google Scholar 

  • McNaughton, J.C., G. Hughes, W.A. Jones, P.A. Stockwell, H.J. Klamut & G.B. Petersen, 1997. The evolution of an intron: analysis of a long, deletion prone intron in the human dystrophin gene. Genomics 40: 294–304.

    Article  PubMed  CAS  Google Scholar 

  • Miklos, G.L.G., 1985. Localized highly repetitive DNA sequences in vertebrate and invertebrate genomes. pp. 241–321, in Molecular Evolutionary Genetics, edited by MacIntyre R.J., Plenum Press New York.

    Google Scholar 

  • Misquitta, L. & B.M. Paterson, 1999. Targeted disruption of gene function in Drosophilaby RNA interference (RNAi): A role for nautilus in embryonic somatic muscle formation. Proc. Natl. Acad. Sci. USA 96: 1451–1456.

    Article  PubMed  CAS  Google Scholar 

  • Montgomery, M.K. & A. Fire, 1998. Double-stranded RNA as a mediator in sequence-specific genetic silencing and co-supression. Trends Genet. 14: 255–258.

    Article  PubMed  CAS  Google Scholar 

  • Mount, S.M., C. Burks, H. Hertz, G.D. Stormo, O. White & C. Fields, 1992. Splicing signals in Drosophila: intron size, information content, and consensus sequences. Nucleic Acids Res. 20: 4255–4262.

    PubMed  CAS  Google Scholar 

  • Pitnick, S., T. Markow & G.S. Spicer, 1995: Delayed male maturity is a cost of producing large sperm in Drosophila. Proc. Natl. Acad. Sci. USA 92: 10614–10618.

    Article  PubMed  CAS  Google Scholar 

  • Rasmusson, K., M. Serr, J. Gepner, I. Gibbons & T.H. Hays, 1994. A family of dynein genes in Drosophila melanogaster. Mol. Biol. Cell 5: 45–55.

    PubMed  CAS  Google Scholar 

  • Reugels, A., R. Kurek, U. Lammermann & H. Bünemann, 2000. Mega-intros in the dynein gene DhDhc7(Y)on the heterochromatic Y chromosome give rise to the giant Threadsloops in primary spermatocytes of Drosophila hydei. Genetics in press (February).

  • Rice, W.R., 1994. Degeneration of a nonrecombining chromosome. Science 263: 230–232.

    PubMed  CAS  Google Scholar 

  • Smith, G.P., 1976. Evolution of repeated DNA sequences by unequal crossover. Science 191: 528–535.

    PubMed  CAS  Google Scholar 

  • Southern, E.M., 1970. Base sequence and evolution of guinea-pig a-satellite DNA. Nature 227: 794–798.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann, M., S. Steinemann & F. Lottspeich, 1993. How Y chromosomes become genetically inert. Proc. Natl. Acad. Sci. USA 90: 5737–5741.

    Article  PubMed  CAS  Google Scholar 

  • Steinemann, M. & S. Steinemann, 1998. Enigma of Y chromosome degeneration: Neo-Yand Neo-Xchromosomes of Drosophila mirandaa model for sex chromosome evolution. Genetica 102/103: 409–420.

    Article  CAS  Google Scholar 

  • Tennyson, C.N., H.J. Klamut & R.G. Worton, 1995 The human dystrophin gene requires 16 h to be transcribed and is cotranscriptionally spliced. Nat. Genetics 9: 184–190.

    Article  CAS  Google Scholar 

  • Trapitz, P., K. H. Glätzer & H. Bünemann, 1992. Towards a physical map of the fertility genes on the heterochromatic Y chromosome of Drosophila hydei: Families of repetitive sequences transcribed on the lampbrush loops Noosesand Threadsare organized in extended clusters of several hundred kilobases. Mol. Gen. Genet. 235: 221–234.

    Article  PubMed  CAS  Google Scholar 

  • Trapitz, P., M. Wlaschek & H. Bünemann, 1988. Structure and function of Y chromosomal DNA. II. Analysis of lampbrush loop associated transcripts in nuclei of primary spermatocytes of Drosophila hydeiby in situhybridization. Chromosoma 96: 159–170.

    Article  PubMed  CAS  Google Scholar 

  • Vogt, P., W. Hennig & I. Siegmund, 1982. Identification of cloned Y chromosomal DNA sequences from a lampbrush loop of Drosophila hydei. Proc. Natl. Acad. Sci. USA 79: 5132–5136.

    Article  PubMed  CAS  Google Scholar 

  • Wakimoto, B. T. & M. G. Hearn, 1990. The effects of chromosome rearrangements on the expression of heterochromatic genes in chromosome 2L of Drosophila melanogaster. Genetics 125: 141–154.

    PubMed  CAS  Google Scholar 

  • Wasserman, M., 1962. Cytological studies of the repleta group of the genus Drosophila: IV. The hydei subgroup. Univ. Texas Pub. 6205: 73–83.

    Google Scholar 

  • Wlaschek, M., Awgulewitsch, A. & H. Bünemann, 1988. Structure and function of Y chromosomal DNA. I. Sequence organization and localization of four families of repetitive DNA on the Y chromosome of Drosophila hydei. Chromosoma 96: 145–158.

    Article  PubMed  CAS  Google Scholar 

  • Wurglics, G. & H.J. Becker, 1993. There is no mitotic nor meiotic recombination in the DrosophilaY-chromosome. Naturwissenschaften 80: 174–176.

    Article  PubMed  CAS  Google Scholar 

  • Zacharias, H.,W. Hennig & O. Leoncini, 1982. Microspectrophotometric comparison of the genome sizes of Drosophila hydeiand some related species. Genetica 58: 153–157.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kurek, R., Reugels, A.M., Lammermann, U. et al. Molecular Aspects of Intron Evolution in Dynein Encoding Mega-Genes on The Heterochromatic Y Chromosome of Drosophila sp.. Genetica 109, 113–123 (2000). https://doi.org/10.1023/A:1026552604229

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026552604229

Navigation