Skip to main content
Log in

Ultrasound for the Visualization and Quantification of Tumor Microcirculation

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Advances in ultrasound based methods for the non-invasive assessment of the tumor microcirculation are described. Two new ultrasound approaches are highlighted. The first method relies on commercially available ultrasound contrast agents in combination with specialized nonlinear imaging sequences. Nonlinear scattering by microbubble contrast agents provides a unique intravascular signature that can be distinguished from the echoes caused by surrouning tissues. Through destruction-reperfusion experiments it is possible to use microbubble contrast agents as a tracer revealing the kinetics of tumor blood flow. The second ultrasound method for examining the microcirculation involves the use of much higher frequencies. At frequencies on the order of 50 MHz, Doppler processing allows the direct assessment of flow dynamics in realtime in arterioles as small as 15 µm. Three dimensional Doppler maps of flow patterning are presented. The strengths and weaknesses of these new methods are discussed and the potential for their use in preclinical animal drug studies, clinical drug trials, and prognostic studies is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J, Merler E, Abernathy C, Williams C: Isolation of a tumor factor responsible for angiogenesis. J Experim Med 133: 275-278, 1971

    Google Scholar 

  2. Schor AM, Schor SL: Tumour angiogenesis. J Pathol 141: 385-413, 1983

    Google Scholar 

  3. Folkman J: New perspectives in clinical oncology from angiogenesis research. Eur J Cancer 32A: 2534-2539, 1996

    Google Scholar 

  4. Kerbel RS: Tumor angiogenesis: past, present and the near future. Carcinogenesis 21: 505-515, 2000

    Google Scholar 

  5. Weidner N, Semple JP, Welch WR, Folkman J: Tumor angiogenesis and metastasis-correlation in invasive breast carcinoma. N Engl J Med 324: 1-8, 1991

    Google Scholar 

  6. Gasparini G (1997) In: Bicknell R, Lewis CE, Ferrara N (eds) Tumor Angiogenesis, Oxford University Press, Oxford, pp 29-44

    Google Scholar 

  7. Klement G, Baruchel S, Rak J, Man S, Clark K, Hicklin DJ, Bohlen P, Kerbel RS: Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity (see comments). J Clin Invest 105: R15-R24, 2000

    Google Scholar 

  8. Browder T, Butterfield CE, Kraling BM, Shi B, Marshall B, O'Reilly MS, Folkman J: Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60: 1878-1886, 2000

    Google Scholar 

  9. Jam RK, Schienger K, Hockel M, Yuan F: Quantitative angiogenesis assays: progress and problems. Nature Med 3: 1203-1208, 1997

    Google Scholar 

  10. Sandison JC: A new method for microscopic study of living growing tissues by the introduction of a transparent chamber in the rabbit's ear. Anat Rec 28: 281-287, 1924

    Google Scholar 

  11. Fan T-PD, Polverini PJ (1997) In: Bicknell R, Lewis CE, Ferrara N (eds) Tumor angiogenesis, Oxford University Press, Oxford, pp. 5-18

    Google Scholar 

  12. Muthukkaruppan VR and Auerbach R: Angiogenesis in the mouse cornea. Science 205: 1979

  13. Gimbrone MAJ, Cotran RS, Leapman SB, Folkman J: Tumor growth and neovascularization: An experimental model using the rabbit cornea. J Natl Cancer Inst 52: 413-427, 1974

    Google Scholar 

  14. Burns P, Halliwell M, Wells P, Webb A: Ultrasonic Doppler studies of the breast. Ultrasound Med Biol 8: 127-143, 1982

    Google Scholar 

  15. Taylor KJW, Ramos I, Carter D, Morse SS, Snower D, Fortune K: Correlation of Doppler US tumor signals with neovascular morphologic features. Radiology 166: 57-62, 1988

    Google Scholar 

  16. Kedar RP, Cosgrove DO, Smith IE, Mansi JL, Bamber JC: Breast carcinoma: measurement of tumor response to primary medical therapy with color Doppler flow imaging. Radiology 190: 825-830, 1994

    Google Scholar 

  17. Burns PN, Powers JE, Hope Simpson D, Brezina A, Kolin A, Chin CT, Uhlendorf V, Fritzsch T: Harmonic power mode Doppler using microbubble contrast agents: an improved method for small vessel flow imaging. Proc IEEE UFFC 1547-1550, 1994

  18. Mattrey RF, Steinbach GC: Ultrasound contrast agents. State of the art. Invest Radiol 26 (Suppl 1): pS5-pS11; discussion S15, 1991

    Google Scholar 

  19. Mattrey RF: The potential role of perfluorochemicals (PFCs) in diagnostic imaging. Artif Cells Blood Substit Immobil Biotechnol 22: 295-313, 1994

    Google Scholar 

  20. Mulvagh SL, DeMaria AN, Feinstein SB, Burns PN, Kaul S, Miller JG, Monaghan M, Porter TR, Shaw U, Villanueva FS: Contrast echocardiography: current and future applications. J Am Soc Echocardiogr 13: 331-342, 2000

    Google Scholar 

  21. Becher H, Burns PN Handbook of Contrast Echocardiography Springer, Berlin, (2000)

    Google Scholar 

  22. Broillet A, Puginier J, Ventrone R, Schneider M: Assessment of myocardial perfusion by intermittent harmonic power Doppler using SonoVue, a new ultrasound contrast agent. Invest Radiol 33: 209-215, 1998

    Google Scholar 

  23. Wilson SR, Burns PN, Muradali D, Wilson JA, Lai X: Harmonic hepatic US with microbubble contrast agent: initial experience showing improved characterization of hemangioma, hepatocellular carcinoma, and metastasis. Radiology 215: 153-161, 2000

    Google Scholar 

  24. Burns PN, Wilson SR, Simpson DH: Pulse inversion imaging of liver blood flow: improved method for characterizing focal masses with microbubble contrast. Invest Radiol 35: 58-71, 2000

    Google Scholar 

  25. Tiemann K, Lohmeier S, Kuntz S, Koster J, Burns PN, Porter TR, Becher H: Real-time contrast echo assessment of myocardial perfusion at low emission power: first experimental and clinical results using power pulse inversion imaging. Echocardiography 16: 799-809, 1999

    Google Scholar 

  26. Foster FS, Pavlin CJ, Harasiewicz KA, Christopher DA, Tumbull DH: Advances in ultrasound biomicroscopy. J Ultrasound Med Biol 26: 1-27, 2000

    Google Scholar 

  27. Ferrara KW, Zagar BG, Sokil-Melgar JB, Silverman RH, Aslanidis IM: Estimation of blood velocities with high-frequency ultrasound. IEEE Trans Ultrason Ferroelect Freq Contr 43: 149-157, 1996

    Google Scholar 

  28. Berson M, Patat F, Wang ZQ, Besse D, Pourcelot L: Very high-frequency pulsed Doppler apparatus. Ultrasound Med Biol 15: 121-131, 1989

    Google Scholar 

  29. Christopher DA, Burns PN, Foster FS: High frequency continuous wave Doppler ultrasound system for the detection of blood flow in the microcirculation. Ultrasound Med Biol 22: 1196-1203, 1996

    Google Scholar 

  30. Christopher DA, Starkoski BG, Burns PN, Foster FS: High frequency pulsed Doppler ultrasound system for detecting and mapping blood flow in the microcirculation. Ultrasound Med Biol 23: 997-1015, 1997

    Google Scholar 

  31. Kruse D, Fornaris J, Silverman R, Coleman D, Ferrara KW: A swept-scanning mode for estimation of blood velocities in the microvasculature. IEEE Trans Ultrason Ferroelect Freq Contr 45: 1437-1440, 1998

    Google Scholar 

  32. Goertz DE, Christopher DA, Yu JL, Kerbel RS, Burns PN, Foster FS: High frequency colour flow imaging of the microcirculation. Ultrasound Med Biol 26: 63-71, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stuart Foster, F., Burns, P.N., Simpson, D.H. et al. Ultrasound for the Visualization and Quantification of Tumor Microcirculation. Cancer Metastasis Rev 19, 131–138 (2000). https://doi.org/10.1023/A:1026541510549

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026541510549

Navigation