Skip to main content
Log in

The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

RNA maturation and modulation of RNA stability play important roles in chloroplast gene expression. In vitro and in vivo studies have shown that both the 5′- and 3′-untranslated regions (UTRs) contain sequence and structural elements that guide these processes, and interact with specific proteins. We have previously characterized the spinach chloroplast petD 3′-UTR in detail by in vitro approaches. This stem-loop forming sequence is a weak terminator but is required for RNA maturation and also exhibits sequence-specific protein binding. To test petD 3′-UTR function in vivo, tobacco chloroplast transformants were generated containing uidA reporter genes flanked by variants of the petD 3′-UTR, including one which does not form an RNA-protein complex in vitro, and one which lacks a stem-loop structure. Analysis of uidA mRNA indicated that a stable secondary structure is required to accumulate a discrete mRNA, and that changes in the 3′-UTR sequence which affect protein binding in vitro can also affect RNA metabolism in vivo. The 3′-UTR also influenced β-glucuronidase protein accumulation, but not in proportion to RNA levels. These results raise the possibility that in tobacco chloroplasts, the 3′-UTR may influence translational yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adams, C.C. and Stern, D.B. 1990. Control of mRNA stability in chloroplasts by 3′ inverted repeats: effects of stem and loop mutations on degradation of psbA mRNA in vitro. Nucl. Acids Res. 18: 6003–6010.

    PubMed  Google Scholar 

  • Ausubel, F.M., Brent, R., Kingston, R.G., Moore, D.D., Seidman, J.G., Smith, J.A. and Struhl, K. 1990. Current Protocols in Molecular Biology. Green/Wiley Interscience, New York.

    Google Scholar 

  • Barkan, A. and Stern, D.B. 1998. Chloroplast mRNA processing: intron splicing and 3′-end metabolism. In: J. Bailey-Serres and D.R. Gallie (Eds.) A Look Beyond Transcription: Mechanisms Determining mRNA Stability and Translation in Plants, American Society of Plant Physiologists, Rockville, MD, pp. 162–213.

    Google Scholar 

  • Barkan, A., Walker, M., Nolasco, M. and Johnson, D. 1994. A nuclear mutation in maize blocks the processing and translation of several chloroplast mRNAs and provides evidence for the differential translation of alternative mRNA forms. EMBO J. 13: 3170–3181.

    PubMed  Google Scholar 

  • Belasco, J.G. 1993. mRNA degradation in prokaryotic cells: an overview. In: J.G. Belasco and G. Brawerman (Eds.) Control of Messenger RNA Stability, Academic Press, New York, pp. 3–12.

    Google Scholar 

  • Blowers, A.D., Klein, U., Ellmore, G.S. and Bogorad, L. 1993. Functional in vivo analyses of the 3′ flanking sequences of the Chlamydomonas chloroplast rbcL and psaB genes. Mol. Gen. Genet. 238: 339–349.

    PubMed  Google Scholar 

  • Carrer, H., Hockenberry, T.N., Svab, Z. and Maliga, P. 1993. Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol. Gen. Genet. 241: 49–56.

    PubMed  Google Scholar 

  • Chen, H. and Stern, D.B. 1991a. Specific ribonuclease activities in spinach chloroplasts promote mRNA maturation and degradation. J. Biol. Chem. 266: 24205–24211.

    PubMed  Google Scholar 

  • Chen, H.C. and Stern, D.B. 1991b. Specific binding of chloroplast proteins in vitro to the 30 untranslated region of spinach chloroplast petD messenger RNA. Mol. Cell. Biol. 11: 4380–4388.

    PubMed  Google Scholar 

  • Chen, Q., Adams, C.C., Usack, L., Yang, J., Monde, R. and Stern, D.B. 1995a. An AU-rich element in the 3′ untranslated region of the spinach chloroplast petD gene participates in sequencespecific RNA-protein complex formation. Mol. Cell. Biol. 15: 2010–2018.

    PubMed  Google Scholar 

  • Chen, X., Kindle, K.L. and Stern, D.B. 1995b. The initiation codon determines the efficiency but not the site of translation initiation in Chlamydomonas chloroplasts. Plant Cell 7: 1295–1305.

    PubMed  Google Scholar 

  • Church, G. and Gilbert, W. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81: 1991–1995.

    PubMed  Google Scholar 

  • Drager, R.G., Zeidler, M., Simpson, C.L. and Stern, D.B. 1996. A chloroplast transcript lacking the 30 inverted repeat is degraded by 3′ → 5′ exoribonuclease activity. RNA 2: 652–663.

    PubMed  Google Scholar 

  • Eibl, C., Zou, Z., Beck, A., Minkyun, K., Mullet, J. and Koop, H.-U. 1999. In vivo analysis of plastid psbA, rbcL and rpl32 UTR elements by chloroplast transformation: tobacco plastid gene expression is controlled by modulation of transcript levels and translation efficiency. Plant J. 19: 333–345.

    PubMed  Google Scholar 

  • Gillham, N.W., Boynton, J.E. and Hauser, C.R. 1994. Translational regulation of gene expression in chloroplasts and mitochondria. Annu. Rev. Genet. 28: 71–93.

    PubMed  Google Scholar 

  • Gray, N.K. and Wickens, M. 1998. Control of translation initiation in animals. Annu. Rev. Cell Dev. Biol. 14: 366–458.

    Google Scholar 

  • Gruissem, W. and Schuster, G. 1993. Control of mRNA degradation in organelles. In: G. Brawerman and J. Belasco (Eds.) Control of Messenger RNA Stability, Academic Press, Orlando, FL, pp. 329–365.

    Google Scholar 

  • Gruissem, W., Greenberg, B.M., Zurawski, G. and Hallick, R.B. 1986. Chloroplast gene expression and promoter identification in chloroplast extracts. Meth. Enzymol. 118: 253–270.

    PubMed  Google Scholar 

  • Hayes, R., Kudla, J., Schuster, G., Gabay, L., Maliga, P. and Gruissem, W. 1996. Chloroplast mRNA 30-end processing by a high molecular weight protein complex is regulated by nuclear encoded RNA binding proteins. EMBO J. 15: 1132–1141.

    PubMed  Google Scholar 

  • Hayes, R., Kudla, J. and Gruissem, W. 1999. Degrading chloroplast mRNA: the role of polyadenylation. Trends Biochem. Sci. 24: 199–202.

    PubMed  Google Scholar 

  • Higgins, C.F., Causton, H.C., Dance, G.S.C. and Mudd, E.A. 1993. The role of the 3′ end in mRNA stability and decay. In: J. Belasco and G. Brawerman (Eds.) Control of Messenger RNA Stability, Academic Press, San Diego, CA, pp. 13–30.

    Google Scholar 

  • Higgs, D.C. and Colbert, J.T. 1993. β-glucuronidase gene expression and mRNA stability in oat protoplasts. Plant Cell Rep. 12: 445–452.

    Google Scholar 

  • Higgs, D.C., Shapiro, R.S., Kindle, K.L. and Stern, D.B. 1999. Small cis-acting sequences that specify secondary structures in a chloroplast mRNA are essential for RNA stability and translation. Mol. Cell. Biol. 19: 8479–8491.

    PubMed  Google Scholar 

  • Hirose, T. and Sugiura, M. 1996. Cis-acting elements and trans-acting factors for accurate translation of chloroplast psbA mRNAs: development of an in vitro translation system from tobacco chloroplasts. EMBO J. 15: 1687–1695.

    PubMed  Google Scholar 

  • Jacobson, A. and Peltz, S.W. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu. Rev. Biochem. 65: 693–739.

    PubMed  Google Scholar 

  • Komine, Y., Kwong, L., Anguera, M.C., Schuster, G. and Stern, D.B. 2000. Polyadenylation of three classes of chloroplast RNA in Chlamydomonas reinhardtii. RNA 6: 1–10.

    PubMed  Google Scholar 

  • Lee, H., Bingham, S.E. and Webber, A.N. 1996. Function of 3′ non-coding sequences and stop codon usage in expression of the chloroplast psaB gene in Chlamydomonas reinhardtii. PlantMol. Biol. 31: 337–354.

    Google Scholar 

  • Li, Y. and Sugiura, M. 1990. Three distinct ribonucleoproteins from tobacco chloroplasts: each contains a unique amino terminal acidic domain and two ribonucleoprotein consensus motifs. EMBO J. 9: 3059–3066.

    PubMed  Google Scholar 

  • Liere, K. and Link, G. 1997. Chloroplast endoribonuclease p54 involved in RNA 30-end processing is regulated by phosphorylation and redox state. Nucl. Acids Res. 25: 2403–2438.

    PubMed  Google Scholar 

  • Lisitsky, I. and Schuster, G. 1995. Phosphorylation of a chloroplast RNA-binding protein changes its affinity to RNA. Nucl. Acids Res. 23: 2506–2511. 542

    PubMed  Google Scholar 

  • Lisitsky, I., Liveanu, V. and Schuster, G. 1995. RNA-binding characteristics of a ribonucleoprotein from spinach chloroplasts. Plant Physiol. 107: 933–941.

    PubMed  Google Scholar 

  • Memon, A.R., Meng, B. and Mullet, J.E. 1996. RNA-binding proteins of 37/38 kDa bind specifically to the barley chloroplast psbA 3′-end untranslated RNA. Plant Mol. Biol. 30: 1195–1205.

    PubMed  Google Scholar 

  • Mieszczak, M., Klahre, U., Levy, J.H., Goodall, G.J. and Filipowicz, W. 1992. Multiple plant RNA-binding proteins identified by PCR: expression of cDNAs encoding RNA-binding proteins targeted to chloroplasts in Nicotiana plumbaginifolia. Mol. Gen. Genet. 234: 390–400.

    PubMed  Google Scholar 

  • Nickelsen, J. and Link, G. 1991. RNA-protein interactions at transcript 3′ ends and evidence for trnK-psbA cotranscription in mustard chloroplasts. Mol. Gen. Genet. 228: 89–96.

    PubMed  Google Scholar 

  • Nickelsen, J. and Link, G. 1992. The 54 kDa RNA-binding protein from mustard chloroplasts mediates endonucleolytic transcript 30 end formation in vitro. Plant J. 3: 537–544.

    Google Scholar 

  • Nickelsen, J., Fleischmann, M., Boudreau, E., Rahire, M. and Rochaix, J.-D. 1999. Identification of cis-acting RNA leader elements required for chloroplast psbD gene expression in Chlamydomonas. Plant Cell 11: 957–970.

    PubMed  Google Scholar 

  • Rochaix, J.-D. 1996. Post-transcriptional regulation of chloroplast gene expression in Chlamydomonas. Plant Mol. Biol. 32: 327–341.

    PubMed  Google Scholar 

  • Rose, A.B. and Last, R.L. 1997. Introns act post-transcriptionally to increase expression of the Arabidopsis thaliana tryptophan pathway gene PAT1. Plant J. 11: 455–464.

    PubMed  Google Scholar 

  • Rott, R., Drager, R.G., Stern, D.B. and Schuster, G. 1996. The 3′ untranslated regions of chloroplast genes in Chlamydomonas reinhardtii do not serve as efficient transcriptional terminators. Mol. Gen. Genet. 252: 676–683.

    PubMed  Google Scholar 

  • Rott, R., Levy, H., Drager, R.G., Stern, D.B. and Schuster, G. 1998a. 3′-processed mRNA is preferentially translated in Chlamydomonas reinhardtii chloroplasts. Mol. Cell. Biol. 18: 4605–4611.

    PubMed  Google Scholar 

  • Rott, R., Liveanu, V., Drager, R.G., Stern, D.B. and Schuster, G. 1998b. The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol. Biol. 36: 307–314.

    PubMed  Google Scholar 

  • Rott, R., Liveanu, V., Drager, R.G., Higgs, D.C., Stern, D.B. and Schuster, G. 1999. Altering the 3′ UTR endonucleolytic cleavage site of a Chlamydomonas chloroplast mRNA affects 3′ end maturation in vitro but not in vivo. Plant Mol. Biol. 40: 676–686.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1998. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schuster, G. and Gruissem, W. 1991. Chloroplast mRNA 3′ end processing requires a nuclear-encoded RNA-binding protein. EMBO J. 10: 1493–1502.

    PubMed  Google Scholar 

  • Schuster, G., Lisitsky, I. and Klaff, P. 1999. Update on chloroplast molecular biology: polyadenylation and degradation of mRNA in the chloroplast. Plant Physiol. 120: 937–944.

    PubMed  Google Scholar 

  • Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., Matsubayashi, T., Zaita, N., Chunwongse, J., Obokata, J., Yamaguchi-Shinozaki, K., Ohto, C., Torazawa, K., Meng, B.Y., Sugita, M., Deno, H., Kamogashira, T., Yamada, K., Kusuda, J., Takaiwa, F., Kato, A., Tohdoh, H., Shimada, H. and Suguira, M. 1986. The complete nucleotide sequence of the tobacco chloroplast genome: its gene organization and expression. EMBO J. 5: 2043–2050.

    Google Scholar 

  • Staub, J.M. and Maliga, P. 1993. Accumulation of D1 polypeptide in tobacco plastids is regulated via the untranslated region of the psbA mRNA. EMBO J. 12: 601–605.

    PubMed  Google Scholar 

  • Staub, J.M. and Maliga, P. 1994. Translation of psbA mRNA is regulated by light via the 50-untranslated region in tobacco plastids. Plant J. 6: 547–553.

    PubMed  Google Scholar 

  • Stern, D.B. and Gruissem, W. 1987. Control of plastid gene expression: 30 inverted repeats act as mRNA processing and stabilizing elements, but do not terminate transcription. Cell 51: 1145–1157.

    Article  PubMed  Google Scholar 

  • Stern, D.B. and Gruissem, W. 1989. Chloroplast mRNA 3′ end maturation is biochemically distinct from prokaryotic mRNA processing. Plant Mol. Biol. 13: 615–625.

    PubMed  Google Scholar 

  • Stern, D.B. and Kindle, K.L. 1993. 3′ end maturation of the Chlamydomonas reinhardtii chloroplast atpB mRNA is a twostep process. Mol. Cell. Biol. 13: 2277–2285.

    PubMed  Google Scholar 

  • Stern, D.B., Jones, H. and Gruissem, W. 1989. Function of plastid mRNA 3′ inverted repeats: RNA stabilization and gene-specific protein binding. J. Biol. Chem. 264: 18742–18750.

    PubMed  Google Scholar 

  • Stern, D.B., Radwanski, E.R. and Kindle, K.L. 1991. A 3′ stem/loop structure of the Chlamydomonas chloroplast atpB gene regulates mRNA accumulation in vivo. Plant Cell 3: 285–297.

    Article  PubMed  Google Scholar 

  • Sugita, M. and Sugiura, M. 1996. Regulation of gene expression in chloroplasts of higher plants. Plant Mol. Biol. 32: 315–326.

    PubMed  Google Scholar 

  • Svab, Z. and Maliga, P. 1993. High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc. Natl. Acad. Sci. USA 90: 913–917.

    PubMed  Google Scholar 

  • Yang, J. and Stern, D.B. 1997. The spinach chloroplast endoribonuclease CSP41 cleaves the 3′ untranslated region of petD mRNA primarily within its terminal stem-loop structure. J. Biol. Chem. 272: 12784–12880.

    Google Scholar 

  • Yang, J., Schuster, G. and Stern, D.B. 1996. CSP41, a sequencespecific chloroplast mRNA binding protein, is an endoribonuclease. Plant Cell 8: 1409–1420.

    PubMed  Google Scholar 

  • Ye, L., Li, Y., Fukami-Kobayashi, K., Go, M., Konishi, T., Watanabe, A. and Sugiura, M. 1991. Diversity of a ribonucleoprotein family in tobacco chloroplasts: two new chloroplast ribonucleoproteins and a phylogenetic tree of ten chloroplast RNA-binding domains. Nucl. Acids Res. 19: 6485–6490.

    PubMed  Google Scholar 

  • Zerges, W., Girard-Bascou, J. and Rochaix, J.D. 1997. Translation of the chloroplast psbC mRNA is controlled by interactions between its 5′ leader and the nuclear loci TBC1 and TBC3 in Chlamydomonas reinhardtii. Mol. Cell. Biol. 17: 3440–3448.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monde, RA., Greene, J.C. & Stern, D.B. The sequence and secondary structure of the 3′-UTR affect 3′-end maturation, RNA accumulation, and translation in tobacco chloroplasts. Plant Mol Biol 44, 529–542 (2000). https://doi.org/10.1023/A:1026540310934

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026540310934

Navigation