Skip to main content
Log in

An Inducible Melanoma Model Implicates a Role for RAS in Tumor Maintenance and Angiogenesis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The established tumor is maintained through complex and poorly understood host-tumor interactions guiding processes such as angiogenesis. The numerous and diverse genetic alterations that accompany tumor genesis raises questions as to whether experimental cancer-promoting mutations remain relevant to tumor maintenance. Utilizing a new doxycycline-inducible H-RASV12G INK4a null mouse melanoma model, we have shown that melanoma genesis and maintenance are strictly dependent upon H-RASV12G expression. Withdrawal of doxycycline and H-RASV12G down-regulation resulted in clinical and histological regression of primary and explanted tumors. Moreover, the initial stages of regression were highlighted by dramatic activation of apoptosis in the tumor cells as well as host-derived endothelial cells. These data provide genetic evidence that H-RASV12G plays a critical role in tumor maintenance and tumor angiogenesis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg RA: The retinoblastoma protein and cell cycle control. Cell 81: 323-330, 1995

    Google Scholar 

  2. Symonds H, Krall L, Remington L, Saenz-Robles M, Lowe S, Jacks T, Van Dyke T: p53-dependent apoptosis suppresses tumor growth and progression in vivo. Cell 78: 703-711, 1994

    Google Scholar 

  3. Morgenbesser SD, Williams BO, Jacks T, DePinho RA: p53-dependent apoptosis produced by Rb-deficiency in the developing mouse lens (see comments). Nature 371: 72-74, 1994

    Google Scholar 

  4. Sabbatini P, Lin J, Levine AJ, White E: Essential role for p53-mediated transcription in E1A-induced apoptosis. Genes Dev 9: 2184-2192, 1995

    Google Scholar 

  5. Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL, Coviello GM, Wright WE, Weinrich SL, Shay JW: Specific association of human telomerase activity with immortal cells and cancer (see comments). Science 266: 2011-2015, 1994

    Google Scholar 

  6. Counter CM, Hahn WC, Wei W, Caddle SD, Beijersbergen RL, Lansdorp PM, Sedivy JM, Weinberg RA: Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization (see comments). Proc Natl Acad Sci USA 95: 14 723-14 728, 1998

    Google Scholar 

  7. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW, Weinberg RA: Creation of human tumour cells with defined genetic elements (see comments). Nature 400: 464-468, 1999

    Google Scholar 

  8. Bacchetti S: Telomere maintenance in tumour cells. Cancer Surv 28: 197-216, 1996

    Google Scholar 

  9. Ruas M, Peters G: The p16INK4a/CDKN2A tumor suppressor and its relatives. Biochim Biophys Acta 1378: F115-177, 1998

    Google Scholar 

  10. Haluska FG, Hodi FS: Molecular genetics of familial cutaneous melanoma. J Clin Oncol 16: 670-682, 1998

    Google Scholar 

  11. Sherr CJ, Roberts JM: CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501-1512, 1999

    Google Scholar 

  12. Quelle DE, Zindy F, Ashmun RA, Sherr CJ: Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83: 993-1000, 1995

    Google Scholar 

  13. Sherr CJ: Tumor surveillance via the ARF-p53 pathway. Genes Dev 12: 2984-2991, 1998

    Google Scholar 

  14. Prives C: Signaling to p53: breaking the MDM2-p53 circuit. Cell 95: 5-8, 1998

    Google Scholar 

  15. Hussussian CJ, Struewing JP, Goldstein AM, Higgins PA, Ally DS, Sheahan MD, Clark Jr WH, Tucker MA, Dracopoli NC: Germline p16 mutations in familial melanoma (see comments). Nat Genet 8: 15-21, 1994

    Google Scholar 

  16. FitzGerald MG, Harkin DP, Silva-Arrieta S, MacDonald DJ, Lucchina LC, Unsal H, O'Neill E, Koh J, Finkelstein DM, Isselbacher KJ, Sober AJ, Haber DA: Prevalence of germ-line mutations in p16, p19ARF, and CDK4 in familial melanoma: analysis of a clinic-based population. Proc Natl Acad Sci USA 93: 8541-8545, 1996

    Google Scholar 

  17. Sharpless NE, DePinho RA: The INK4A/ARF locus and its two gene products. Curr Opin Genet Dev 9: 22-30, 1999

    Google Scholar 

  18. Gardie B, Cayuela JM, Martini S, Sigaux F: Genomic alterations of the p19ARF encoding exons in T-cell acute lymphoblastic leukemia. Blood 91: 1016-1020, 1998

    Google Scholar 

  19. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA, Grosveld G, Sherr CJ: Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 91: 649-659, 1997

    Google Scholar 

  20. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L, Potes J, Chen K, Orlow I, Lee HW, Cordon-Cardo C, DePinho RA: The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2's inhibition of p53. Cell 92: 713-723, 1998

    Google Scholar 

  21. Le Douarin N: The Neural Crest. Cambridge University Press, Cambridge, UK, 1998, pp 1-259

    Google Scholar 

  22. Bennett DC: Genetics, development, and malignancy of melanocytes. Int Rev Cytol 146: 191-260, 1993

    Google Scholar 

  23. Koprowski H, Herlyn M, Balaban G, Parmiter A, Ross A, Nowell P: Expression of the receptor for epidermal growth factor correlates with increased dosage of chromosome 7 in malignant melanoma. Somat Cell Mol Genet 11: 297-302, 1985

    Google Scholar 

  24. de Wit PE, Moretti S, Koenders PG, Weterman MA, van Muijen GN, Gianotti B, Ruiter DJ: Increasing epidermal growth factor receptor expression in human melanocytic tumor progression. J Invest Dermatol 99: 168-173, 1992

    Google Scholar 

  25. Ellis DL, King Jr LE, Nanney LB: Increased epidermal growth factor receptors in melanocytic lesions. J Am Acad Dermatol 27: 539-546, 1992

    Google Scholar 

  26. Trent JM: Cytogenetics of human malignant melanoma. Cancer Metastasis Rev 10: 103-113, 1991

    Google Scholar 

  27. Bastian BC, LeBoit PE, Hamm H, Brocker EB, Pinkel D: Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res 58: 2170-2175, 1998

    Google Scholar 

  28. Yayon A, Ma YS, Safran M, Klagsbrun M, Halaban R: Suppression of autocrine cell proliferation and tumorigenesis of human melanoma cells and fibroblast growth factor transformed fibroblasts by a kinase-deficient FGF receptor 1: evidence for the involvement of Src-family kinases. Oncogene 14: 2999-3009, 1997

    Google Scholar 

  29. Wang Y, Becker D: Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Nat Med 3: 887-893, 1997

    Google Scholar 

  30. Halaban R, Kwon BS, Ghosh S, Delli Bovi P, Baird A: bFGF as an autocrine growth factor for human melanomas. Oncogene Res 3: 177-186, 1988

    Google Scholar 

  31. Becker D, Meier CB, Herlyn M: Proliferation of human malignant melanomas is inhibited by antisense oligodeoxynucleotides targeted against basic fibroblast growth factor. EMBO J 8: 3685-3691, 1989

    Google Scholar 

  32. Becker D, Lee PL, Rodeck U, Herlyn M: Inhibition of the fibroblast growth factor receptor 1 (FGFR-1) gene in human melanocytes and malignant melanomas leads to inhibition of proliferation and signs indicative of differentiation. Oncogene 7: 2303-2313, 1992

    Google Scholar 

  33. Rodeck U, Herlyn M: Growth factors in melanoma. Cancer Metastasis Rev 10: 89-101, 1991

    Google Scholar 

  34. Shih IM, Herlyn M: Autocrine and paracrine roles for growth factors in melanoma. In Vivo 8: 113-123, 1994

    Google Scholar 

  35. Jafari M, Papp T, Kirchner S, Diener U, Henschler D, Burg G, Schiffmann D: Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J Cancer Res Clin Oncol 121: 23-30, 1995

    Google Scholar 

  36. Di Cristofano A, Pesce B, Cordon-Cardo C, Pandolfi PP: Pten is essential for embryonic development and tumour suppression. Nat Genet 19: 348-355, 1998

    Google Scholar 

  37. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, Ruland J, Penninger JM, Siderovski DP, Mak TW: Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95: 29-39, 1998

    Google Scholar 

  38. Podsypanina K, Ellenson LH, Nemes A, Gu J, Tamura M, Yamada KM, Cordon-Cardo C, Catoretti G, Fisher PE, Parsons R: Mutation of Pten/Mmac1 in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci USA 96: 1563-1568, 1999

    Google Scholar 

  39. Guldberg P, thor Straten P, Birck A, Ahrenkiel V, Kirkin AF, Zeuthen J: Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. Cancer Res 57: 3660-3663, 1997

    Google Scholar 

  40. Teng DH, Hu R, Lin H, Davis T, Iliev D, Frye C, Swedlund B, Hansen KL, Vinson VL, Gumpper KL, Ellis L, El-Naggar A, Frazier M, Jasser S, Langford LA, Lee J, Mills GB, Pershouse MA, Pollack RE, Tornos C, Troncoso P, Yung WK, Fujii G, Berson A, Steck PA, et al.: MMAC1/PTEN mutations in primary tumor specimens and tumor cell lines. Cancer Res 57: 5221-5225, 1997

    Google Scholar 

  41. Tsao H, Zhang X, Benoit E, Haluska FG: Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene 16: 3397-3402, 1998

    Google Scholar 

  42. Robertson GP, Furnari FB, Miele ME, Glendening MJ, Welch DR, Fountain JW, Lugo TG, Huang HJ, Cavenee WK: In vitro loss of heterozygosity targets the PTEN/MMAC1 gene in melanoma. Proc Natl Acad Sci USA 95: 9418-9423, 1998

    Google Scholar 

  43. Serrano M, Lee H, Chin L, Cordon-Cardo C, Beach D, DePinho RA: Role of the INK4a locus in tumor suppression and cell mortality. Cell 85: 27-37, 1996

    Google Scholar 

  44. Ganss R, Montoliu L, Monaghan AP, Schutz G: A cell-specific enhancer far upstream of the mouse tyrosinase gene confers high level and copy number-related expression in transgenic mice. Embo J 13: 3083-3093, 1994

    Google Scholar 

  45. Chin L, Pomerantz J, Polsky D, Jacobson M, Cohen C, Cordon-Cardo C, Horner JW, 2nd, DePinho RA: Cooperative effects of INK4a and ras in melanoma susceptibility in vivo. Genes Dev 11: 2822-2834, 1997

    Google Scholar 

  46. Thomson TM, Real FX, Murakami S, Cordon-Cardo C, Old LJ, Houghton AN: Differentiation antigens of melanocytes and melanoma: analysis of melanosome and cell surface markers of human pigmented cells with monoclonal antibodies. J Invest Dermatol 90: 459-466, 1988

    Google Scholar 

  47. Stott FJ, Bates S, James MC, McConnell BB, Starborg M, Brookes S, Palmero I, Ryan K, Hara E, Vousden KH, Peters G: The alternative product from the human CDKN2A locus, p14(ARF), participates in a regulatory feedback loop with p53 and MDM2. EMBO J 17: 5001-5014, 1998

    Google Scholar 

  48. Zhang Y, Xiong Y, Yarbrough WG: ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92: 725-734, 1998

    Google Scholar 

  49. Chin L, Tam A, Pomerantz J, Wong M, Holash J, Bardeesy N, Shen Q, O'Hagan R, Pantginis J, Zhou H, Horner 2nd JW, Cordon-Cardo C, Yancopoulos GD, DePinho RA: Essential role for oncogenic Ras in tumour maintenance. Nature 400: 468-472, 1999

    Google Scholar 

  50. Wesseling P, van der Laak JA, de Leeuw H, Ruiter DJ, Burger PC: Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme. Computer-assisted image analysis of whole-tumor sections. J Neurosurg 81: 902-909, 1994

    Google Scholar 

  51. Holmgren L, O'Reilly MS, Folkman J: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression (see comments). Nat Med 1: 149-153, 1995

    Google Scholar 

  52. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, Menard S, Gatter KC, Harris AL, Fox S, Buyse M, Pilotti S, Pierotti M, Rilke F: Non-small-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol 151: 1417-1423, 1997

    Google Scholar 

  53. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994-1998, 1999

    Google Scholar 

  54. Folkman J: Transplacental carcinogenesis by stilbestrol. N Engl J Med 285: 404-405, 1971

    Google Scholar 

  55. Folkman J: What is the evidence that tumors are angiogenesis dependent? (editorial). J Natl Cancer Inst 82: 4-6, 1990

    Google Scholar 

  56. Hanahan D, Folkman J: Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86: 353-364, 1996

    Google Scholar 

  57. Thompson TC, Southgate J, Kitchener G, Land H: Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ. Cell 56: 917-930, 1989

    Google Scholar 

  58. Arbiser JL, Moses MA, Fernandez CA, Ghiso N, Cao Y, Klauber N, Frank D, Brownlee M, Flynn E, Parangi S, Byers HR, Folkman J: Oncogenic H-ras stimulates tumor angiogenesis by two distinct pathways. Proc Natl Acad Sci USA 94: 861-866, 1997

    Google Scholar 

  59. Okada F, Rak JW, Croix BS, Lieubeau B, Kaya M, Roncari L, Shirasawa S, Sasazuki T, Kerbel RS: Impact of oncogenes in tumor angiogenesis: mutant K-ras up-regulation of vascular endothelial growth factor/vascular permeability factor is necessary, but not sufficient for tumorigenicity of human colorectal carcinoma cells. Proc Natl Acad Sci USA 95: 3609-3614, 1998

    Google Scholar 

  60. Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel RS: Oncogenes as inducers of tumor angiogenesis. Cancer Metastasis Rev 14: 263-277, 1995

    Google Scholar 

  61. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843-845, 1992

    Google Scholar 

  62. Goldberg MA, Schneider TJ: Similarities between the oxygen-sensing mechanisms regulating the expression of vascular endothelial growth factor and erythropoietin. J Biol Chem 269: 4355-4359, 1994

    Google Scholar 

  63. Mukhopadhyay D, Tsiokas L, Zhou XM, Foster D, Brugge JS, Sukhatme VP: Hypoxic induction of human vascular endothelial growth factor expression through c-Src activation. Nature 375: 577-581, 1995

    Google Scholar 

  64. Mazure NM, Chen EY, Yeh P, Laderoute KR, Giaccia AJ: Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 56: 3436-3440, 1996

    Google Scholar 

  65. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841-844, 1993

    Google Scholar 

  66. Zuber J, Tchernitsa OI, Hinzmann B, Schmitz AC, Grips M, Hellriegel M, Sers C, Rosenthal A, Schafer R: A genome-wide survey of RAS transformation targets. Nat Genet 24: 144-152, 2000

    Google Scholar 

  67. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582-1584, 1994

    Google Scholar 

  68. Bleuel K, Popp S, Fusenig NE, Stanbridge EJ, Boukamp P: Tumor suppression in human skin carcinoma cells by chromosome 15 transfer or thrombospondin-1 overexpression through halted tumor vascularization. Proc Natl Acad Sci USA 96: 2065-2070, 1999

    Google Scholar 

  69. Tenan M, Fulci G, Albertoni M, Diserens AC, Hamou MF, El Atifi-Borel M, Feige JJ, Pepper MS, Van Meir EG: Thrombospondin-1 is downregulated by anoxia and suppresses tumorigenicity of human glioblastoma cells. J Exp Med 191: 1789-1798, 2000

    Google Scholar 

  70. Clasper S, Vekemans S, Fiore M, Plebanski M, Wordsworth P, David G, Jackson DG: Inducible expression of the cell surface heparan sulfate proteoglycan syndecan-2 (fibroglycan) on human activated macrophages can regulate fibroblast growth factor action. J Biol Chem 274: 24 113-24 123, 1999

    Google Scholar 

  71. Takigawa M, Nishida Y, Suzuki F, Kishi J, Yamashita K, Hayakawa T: Induction of angiogenesis in chick yolksac membrane by polyamines and its inhibition by tissue inhibitors of metalloproteinases (TIMP and TIMP-2). Biochem Biophys Res Commun 171: 1264-1271, 1990

    Google Scholar 

  72. Valente P, Fassina G, Melchiori A, Masiello L, Cilli M, Vacca A, Onisto M, Santi L, Stetler-Stevenson WG, Albini A: TIMP-2 over-expression reduces invasion and angiogenesis and protects B16F10 melanoma cells from apoptosis (published erratum in Int J Cancer 1999 Jan 29; 80(3): 485). Int J Cancer 75: 246-253, 1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wong, A.K., Chin, L. An Inducible Melanoma Model Implicates a Role for RAS in Tumor Maintenance and Angiogenesis. Cancer Metastasis Rev 19, 121–129 (2000). https://doi.org/10.1023/A:1026537423753

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026537423753

Navigation