Skip to main content
Log in

On the Roles of Heterochromatin and Euchromatin in Meiosis in Drosophila: Mapping Chromosomal Pairing Sites and Testing Candidate Mutations for Effects on X–Y Nondisjunction and Meiotic Drive in Male Meiosis

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Mapping of pairing sites involved in meiotic homolog disjunction in Drosophilahas led to conflicting hypotheses about the nature of such sites and the role of heterochromatin in meiotic pairing. In the female-specific distributive system, pairing regions appear to be exclusively heterochromatic and map to broad regions encompassing many different sequences. In male meiosis, autosomal pairing sites appear to be distributed broadly within euchromatin but to be absent from heterochromatin, whereas the X-pairing site maps in the centric heterochromatin. The X site has been shown to coincide with the intergenic spacer (IGS) repeats within the rDNA arrays shared between the X and Y. It has not been clear whether the heterochromatic location of this pairing site has any significance. A novel assay for genic modifiers of X–Y chromosome pairing was developed based on the intermediate nondisjunction levels observed in males whose X chromosome lacks the native pairing site but contains two transgenic insertions of single rDNA genes. This assay was used to test several mutations in Su(var)(Suppressor of position effect variegation), PcG(Polycomb-Group) recombination defective, and repair-defective genes. No strong effects on disjunction were seen. However, the tests did uncover several mutations that suppress or enhance the meiotic drive (distorted X-Y recovery ratio) that accompanies X–Y pairing failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baker B.S. and Carpenter A.T.C.: Genetic analysis of sex chromosome meiotic mutants in Drosophila melanogaster, Genetics 71(1972): 255–286.

    PubMed  CAS  Google Scholar 

  2. Baker S.M., Bronner C.E., Zhang L., Plug A.W., Robatzek M., Warren G., Elliot E.A., Yu J., Ashley T., Arnheim N., Flavell R.A. and Liskay R.M.: Male mice defective in the DNA mismatch repair gene Pms2 exhibit abnormal chromosome synapsis in meiosis, Cell 82(1995): 309–319.

    Article  PubMed  CAS  Google Scholar 

  3. Baker S.M., Plug A.W., Prolla T.A., Bronner C.E., Harris A.C., Yao X., Christie D-M., Monell C., Arnheim N., Bradley A., Ashley T. and Liskay R.M.: Involvement of mouseMlh1 in DNA mismatch repair and meiotic crossing over, Nat. Genet. 13(1996): 336–342.

    Article  PubMed  CAS  Google Scholar 

  4. Bickel S.E., Wyman D.W., Miyazaki W.Y., Moore D.P. and Orr-Weaver T.L.: Identification of ORD, a Drosophilaprotein essential for sister chromatid cohesion, EMBO J. 15(1996): 1451–1459.

    PubMed  CAS  Google Scholar 

  5. Bonven B.J., Gocke E. and Westergaard O.: A high affinity topoisomerase I binding sequence is clustered at DNAase I hypersensitive sites in Tetrahymena R-chromatin, Cell 41(1985): 541–551.

    Article  PubMed  CAS  Google Scholar 

  6. Boyd J.B., Golino M.D., Shaw K.E.S., Osgood C.J. and Green M.M.: Third chromosome mutagen-sensitive mutants of Drosophila melanogaster, Genetics 97(1981): 607–623.

    PubMed  CAS  Google Scholar 

  7. Boyd J.B., Mason J.M., Yamamoto A.H., Brodberg R.K., Banga S.S. and Sakaguchi K.: A genetic and molecular analysis of DNA repair in Drosophila, J. Cell. Sci. Suppl. 6(1987): 39–60.

    CAS  Google Scholar 

  8. Brodsky M. and Rubin G.: mus304encodes a novel checkpoint protein required during multiple stages of development, A. Dros. Res. Conf. 40(1999): 130.

    Google Scholar 

  9. Carpenter A.T.C.: Synaptonemal complex and recombination nodules in wild-type Drosophila melanogasterfemales, Genetics 92(1979): 511–541.

    PubMed  CAS  Google Scholar 

  10. Coen E.S. and Dover G.A.: Multiple polI initiation sequences in rDNA spacers of Drosophila melanogaster, Nucl. Acids Res. 10(1982): 7017–7026.

    PubMed  CAS  Google Scholar 

  11. Cook K.R., Murphy T.R., Nguyen T.C. and Karpen, G.H.: Identification of trans-acting genes necessary for centromere function in Drosophila melanogasterusing centromeredefective minichromosomes, Genetics 145(1997): 737–747.

    PubMed  CAS  Google Scholar 

  12. Craymer L.: Techniques for manipulating chromosome rearrangements and their application to Drosophila melanogaster. I. Pericentric inversions, Genetics 99(1981): 75–97.

    PubMed  CAS  Google Scholar 

  13. Dernburg A.F., Daily D.R., Yook K.J., Corbin J.A., Sedat J.W. and Sullivan W.: Selective loss of sperm bearing a compound chromosome in the Drosophilafemale, Genetics 143(1998): 1629–1642.

    Google Scholar 

  14. Dernburg A.F., Sedat J.W. and Hawley R.S.: Direct evidence of a role for heterochromatin in meiotic chromosome segregation, Cell 86(1996): 135–146.

    Article  PubMed  CAS  Google Scholar 

  15. Engels W.R., Preston C.R. and Johnson-Schlitz D.: Longrange cispreference in DNA homology search over the length of a Drosophilachromosome, Science 263(1994): 1623–1625.

    PubMed  CAS  Google Scholar 

  16. Fanti L., Giovinazzo G., Berloco M. and Pimpinelli S.: The heterochromatin protein 1 prevents telomere fusions in Drosophila, Molec. Cell 2(1998): 527–538.

    Article  PubMed  CAS  Google Scholar 

  17. Gethmann R.C.:Meiosis in male Drosophila melanogaster. II. Nonrandom segregation of compound second chromosomes, Genetics 83(1976): 743–751.

    PubMed  CAS  Google Scholar 

  18. Ghabrial A.R., Ray R.P. and Schupbach T.: okraand spindle-Bencode components of the RAD52DNA repair pathway and affect meiosis and patterning in Drosophilaoogenesis. Genes Devel. 12: (1998), 2711–2723.

    PubMed  CAS  Google Scholar 

  19. Green M.M.: On the meiotic effect of mutants ats the mutagensensitive locus, mus(3)304, in Drosophila melanogaster, Biol. Zentralbl. 101(1982): 223–226.

    CAS  Google Scholar 

  20. Grell R.F.: Distributive pairing. In: Novitski N. and Ashburner M (eds), Genetics and Biology of Drosophila 1aAcademic Press, New York, 1976, pp. 435–486.

    Google Scholar 

  21. Hardy R.W., Lindsley D.L., Livak K.J., Lewis B., Silversten A.L., Joslyn G.L., Edwards J. and Bonaccorsi S.: Cytogenetic analysis of a segment of the Y chromosome of Drosophila melanogaster, Genetics 107(1984): 591–610.

    PubMed  CAS  Google Scholar 

  22. Harris P.V., Mazina O.M., Leonhardt E.A., Case R.B., Boyd J.B. and Burtis K.C.: Molecular cloning of Drosophila mus308, a gene involved in DNA cross-link repair with homology to prokaryotic DNA polymerase I genes, Mol. Cell. Biol. 16(1996): 5764–5771. 92

    PubMed  CAS  Google Scholar 

  23. Hawley R.S.: Chromosome sites necessary for normal levels of meiotic recombination. I. Existence and mapping of the sites, Genetics 94(1980): 625–646.

    PubMed  CAS  Google Scholar 

  24. Hawley R.S.: Exchange and chromosomal segregation in eucaryotes. In: Kucherlapati R. and Smith R.R. (eds), Genetic Recombination. American Society for Microbiology, Washington, D.C., 1988, pp. 497–527.

    Google Scholar 

  25. Hawley R.S., Irick H., Zitron A.E., Haddox D.A., Lohe A., New C., Whitley M. D., Arbel T., Jang J., McKim K. and Childs G.: There are two mechanisms of achiasmate segregation in Drosophilafemales, one of which requires heterochromatic homology, Devel. Genet. 13(1992): 440–467.

    Article  CAS  Google Scholar 

  26. Hawley R.S., McKim K.S. and Arbel T.: Meiotic segregation in Drosophila melanogasterfemales: molecules, mechanisms and myths, Annu. Rev. Genet. 27(1993): 281–317.

    PubMed  CAS  Google Scholar 

  27. Hayashi S., Ruddell A., Sinclair D.A.R. and Grigliatti T.: Chromosomal structure is altered by mutations that suppress or enhance position effect variegation, Chromosoma 99(1990): 391–400.

    Article  PubMed  CAS  Google Scholar 

  28. Hilliker A.J., Holm D.G. and Appels R.: The relationship between heterochromatic homology and meiotic segregation of compound second autosomes during spermatogenesis in Drosophila melanogaster, Genet. Res. Camb. 39(1982): 157–168.

    CAS  Google Scholar 

  29. Ivy J.: Mutations that disrupt meiosis in males of Drosophila melanogaster, Ph.D.thesis (1981), University of California at San Diego, La Jolla, CA.

    Google Scholar 

  30. Karpen G.H., Le M.-H. and Le H.: Centric heterochromatin and the efficiency of achiasmate disjunction in Drosophilafemale meiosis, Science 273(1996): 118–122.

    PubMed  CAS  Google Scholar 

  31. Keeney S, Giroux C.N. and Kleckner N.: Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family, Cell 88(1997): 375–384.

    Article  PubMed  CAS  Google Scholar 

  32. Kerrebrock A.W., Miyazaki W.Y., Birnby D. and Orr-Weaver T.L.: The Drosophila mei-S332gene promotes sisterchromatid cohesion in meiosis following kinetochore differentiation, Genetics 130(1992): 827–841.

    PubMed  CAS  Google Scholar 

  33. Lichten M. and Goldman A.S.H.: Meiotic recombination hotspots, Annu. Rev. Genet. 29(1995): 423–444.

    Article  PubMed  CAS  Google Scholar 

  34. Lifton R.P., Goldberg M.L., Karp R.W. and Hogness D.S.: The organization of the histone genes in Drosophila melanogaster: functional and evolutionary implications, Cold Spring Harbor Symp. Quant. Biol. 42(1977): 1047–1051.

    Google Scholar 

  35. Lindsley D.L. and Zimm G.: The Genome of Drosophila Melanogaster. Academic Press. New York, London, 1972.

    Google Scholar 

  36. Livak K.J.: Organization and mapping of a sequence on the Drosophila melanogasterX and Y chromosomes that is transcribed during spermatogenesis, Genetics 107(1984): 611–634.

    PubMed  CAS  Google Scholar 

  37. McKee B.D.: Sex chromosome meiotic drive in Drosophila melanogastermales, Genetics 106(1984): 403–422.

    PubMed  Google Scholar 

  38. McKee B.D.: The license to pair: identification of meiotic pairing sites in Drosophila, Chromosoma 105(1996): 135–141.

    Article  PubMed  CAS  Google Scholar 

  39. McKee B.D.: Pairing sites and the role of chromosome pairing in meiosis and spermatogenesis inmale Drosophila, Curr. Top. Devel. Biol. 37(1998): 77–115.

    Article  CAS  Google Scholar 

  40. McKee B.D., Habera L. and Vrana J.A.: Evidence that intergenic spacer repeats of Drosophila melanogasterrRNA genes function as X–Y pairing sites in male meiosis, and a general model of achiasmatic pairing, Genetics 132(1992): 529–544.

    PubMed  CAS  Google Scholar 

  41. McKee B.D., Hong C.-S. and Yoo S.:Meiotic pairing sites and genes involved in segregation of the X and Y chromosomes of Drosophila melanogaster, Chromosomes Today 13(2000): 139–152.

    CAS  Google Scholar 

  42. McKee B.D. and Karpen G.H.: Drosophilaribosomal RNA genes function as an X–Y meiotic pairing site during male meiosis, Cell 61(1990): 61–72.

    Article  PubMed  CAS  Google Scholar 

  43. McKee B. and Lindsley D.L.: Inseparability of Xheterochromatic functions responsible for X:Y pairing, meiotic drive, and male fertility in Drosophila melanogastermales, Genetics 116(1987): 399–407.

    PubMed  Google Scholar 

  44. McKee B.D., Lumsden S.E. and Das S.: The distribution of male meiotic pairing sites on chromosome 2 of Drosophila melanogaster: Meiotic pairing and segregation of 2-Y transpositions, Chromosoma 102(1993): 180–194.

    Article  PubMed  CAS  Google Scholar 

  45. McKee B.D., Ren X.-J. and Hong C.-S.: A recA-like gene in Drosophila melanogasterthat is expressed at high levels in female but not male meiotic tissues, Chromosoma 104(1996): 479–488.

    PubMed  CAS  Google Scholar 

  46. McKee B.D., Wilhelm K., Merrill C. and Ren X.-J.: Male sterility and meiotic drive associated with sex chromosome rearrangements in Drosophila: Role of X-Y pairing, Genetics 149(1998): 143–155.

    PubMed  CAS  Google Scholar 

  47. Merrill C.J., Chakravarti D., Habera L., Das S., Eisenhour L. and McKee B.D.: Promoter-containing ribosomal DNA fragments function as X-Y meiotic pairing sites in D. melanogastermales, Devel. Genet. 13(1992): 468–484.

    Article  CAS  Google Scholar 

  48. McKim K.S. and Hayashi-Hagihara A.: mei-W68in Drosophila melanogasterencodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved, Genes Devel. 12(1998): 2932–2942.

    PubMed  CAS  Google Scholar 

  49. Miklos G.L.G.: Sex chromosome pairing and male fertility, Cytogenet. Cell Genet. 13(1974): 558–577.

    PubMed  CAS  Google Scholar 

  50. Moore D.P., Miyazaki W.Y., Tomkiel J.E. and Orr-Weaver T.L.: Double or nothing: a Drosophilamutation affecting meiotic chromosome segregation in both females and males, Genetics 136(1994): 953–964.

    PubMed  CAS  Google Scholar 

  51. Palumbo G., Bonnacorsi S., Robbins L. and Pimpinelli S.: Genetic analysis of Stellateelements of Drosophila melanogaster, Genetics 138(1994): 1181–1197.

    PubMed  CAS  Google Scholar 

  52. Peacock W.J.: Nonrandom segregation of chromosomes in Drosophilamales, Genetics 51(1965): 573–583.

    PubMed  CAS  Google Scholar 

  53. Peacock W.J., Miklos G.L.G. and Goodchild D.J.: Sex chromosome meiotic drive systems in Drosophila melanogaster: I. Abnormal spermatid development in males with a heterochromatin deficient X chromosome (sc4sc8), Genetics 79(1975): 613-634.

    PubMed  CAS  Google Scholar 

  54. Pimpinelli S. and Dimitri P.: Cytogenetic analysis of segregation distortion in Drosophila melanogaster: the cytological organization of the Responder (Rsp)locus, Genetics 121(1989): 765–772.

    PubMed  CAS  Google Scholar 

  55. Pirrotta V.: Polycombing the genome: PcG, trxG, and chromatin silencing, Cell 93(1998): 333–336.

    Article  PubMed  CAS  Google Scholar 

  56. Ren X.-J., Eisenhour L., Hong C.-S., Lee Y. and McKee B. D.: Roles of rDNA spacer and transcription unit sequences in X– Y meiotic pairing in Drosophila melanogaster, Chromosoma 106(1997): 29–36.

    Article  PubMed  CAS  Google Scholar 

  57. Sandler L., Lindsley D.L., Nicoletti B. and Trippa G.: Mutants affecting meiosis in natural populations of Drosophila melanogaster, Genetics 60(1968): 525–558.

    PubMed  CAS  Google Scholar 

  58. Sekelsky J.J., McKim K.S., Messina L., French R.L., Hurley W.D., Arbel T., Chin G.M., Deneen B., Force S.J., Hari K.L., Jang J.K., Laurencon A.C., Madden L.D., Matthies H.J., Milliken D.B., Page S.L., Ring A.D., Wayson S.M., Zimmerman C.C. and Hawley R.S.: Identification of novel Drosophila 93 meiotic genes recovered in a P-element screen, Genetics 148(1999): 529–542.

    Google Scholar 

  59. Shao Z., Raible F., Mollaaghababa R., Guyon J.R., Wu CT., Bender W. and Kingston R.E.: Stabilization of chromatin structure by PRC1, a Polycomb complex, Cell 98(1999): 37–46.

    Article  PubMed  CAS  Google Scholar 

  60. Shinohara A., Ogawa H. and Ogawa T.: Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein, Cell 69(1992): 457–470.

    Article  PubMed  CAS  Google Scholar 

  61. Sun X., Wahlstrom J. and Karpen G.: Molecular structure of a functional Drosophilacentromere, Cell 91(1997): 1007– 1019.

  62. Tartof K.D., Bishop C., Jones M., Hobbs C.A. and Locke J.: Towards an understanding of position effect variegation, Dev. Genet. 10(1989): 162–176.

    Article  PubMed  CAS  Google Scholar 

  63. Wallrath L.L.: Unfolding the mysteries of heterochromatin, Curr. Opin. Genet. Devel. 8(1998): 147–153.

    Article  CAS  Google Scholar 

  64. Wu C.I., Lyttle T.W., Wu M.L. and Lin G.F.: Association between a satellite DNA sequence and the Responder of Segregation Distorterin Drosophila melanogaster, Cell 54(1988): 179–189.

    Article  PubMed  CAS  Google Scholar 

  65. Wu C.T. and Howe M.: A genetic analysis of the suppressor 2 of zeste complex of Drosophila melanogaster, Genetics 140(1995): 139–181.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McKee, B.D., Hong, Cs. & Das, S. On the Roles of Heterochromatin and Euchromatin in Meiosis in Drosophila: Mapping Chromosomal Pairing Sites and Testing Candidate Mutations for Effects on X–Y Nondisjunction and Meiotic Drive in Male Meiosis. Genetica 109, 77–93 (2000). https://doi.org/10.1023/A:1026536200594

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026536200594

Navigation