Skip to main content

Advertisement

Log in

Impact of Multiple Insertions of two Retroelements, ZAM and Idefix at an Euchromatic Locus

  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Transposable elements represent a large fraction of eukaryotic genomes and they are thought to play an important role in chromatin structure. ZAMand Idefixare two LTR-retrotransposons from Drosophila melanogastervery similar in structure to vertebrate retroviruses. In all the strains where their distribution has been studied, ZAMappears to be present exclusively in the intercalary heterochromatin while Idefixcopies are mainly found in the centromeric heterochromatin with very few copies in euchromatin. Their distribution varies in a specific strain called RevI in which the mobilization of ZAMand Idefixis highly induced. In this strain, 15 copies of ZAMand 30 copies of Idefixare found on the chromosomal arms in addition to their usual distribution. Amongst the loci where new copies are detected, a hotspot for their insertion has been detected at the whitelocus where up to four elements occurred within a 3-kb fragment at the 5′ end of this gene. This property of ZAMand Idefixto accumulate at a defined site provides an interesting paradigm to bring insight into the effect exerted by multiple insertions of transposable elements at an euchromatic locus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baldrich, E., P. Dimitri, S. Desset, P. Leblanc, D. Codipietro & C. Vaury, 1997. Genomic distribution of the retrovirus-like element ZAM in Drosophila. Genetica 100: 131–140.

    Article  PubMed  CAS  Google Scholar 

  • Britten, R.J., 1996. Cases of ancient mobile element DNA insertions that now affect gene regulation. Mol. Phylogenet. Evol. 5: 13–17.

    Article  PubMed  CAS  Google Scholar 

  • Carmena, M. & C. Gonzalez, 1995. Transposable elements map in a conserved pattern of distribution extending from betaheterochromatin to centromeres in Drosophila melanogaster. Chromosoma 103: 676–684.

    PubMed  CAS  Google Scholar 

  • Carteau, S., C. Hoffmann & F. Bushman, 1998. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: centromeric alphoid repeats are a disfavored target. J. Virol. 72: 4005–4014.

    PubMed  CAS  Google Scholar 

  • Dej, K.J., T. Gerasimova, V.G. Corces & J.D. Boeke, 1998. A hotspot for the Drosophilagypsy retroelement in the ovo locus. Nucleic Acids Res. 26: 4019–4025.

    Article  PubMed  CAS  Google Scholar 

  • Desset, S., C. Conte, P. Dimitri, V. Calco, B. Dastugue & C. Vaury, 1999. Mobilization of two retroelements, ZAMand Idefix, in a novel unstable line of Drosophila melanogaster. Mol. Biol. Evol. 16: 54–66.

    PubMed  CAS  Google Scholar 

  • Dimitri, P., B. Arca, L. Berghella & E. Mei, 1997. High genetic instability of heterochromatin after transposition of the LINElike I factor in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 22; 94(15): 8052–8057.

    Article  Google Scholar 

  • Dorer, D.R. & S. Henikoff, 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. Cell 77: 993–1002.

    Article  PubMed  CAS  Google Scholar 

  • Dorn, R., V. Krauss, G. Reuter & H. Saumweber, 1993. The enhancer of position-effect variegation of Drosophila, E(var)3-93D, codes for a chromatin protein containing a conserved domain common to several transcriptional regulators. Proc. Natl. Acad. Sci. USA 90: 11376–11380.

    Article  PubMed  CAS  Google Scholar 

  • Gerasimova, T.I., D.A. Gdula, D.V. Gerasimov, O. Simonova & V.G. Corces, 1995. A Drosophilaprotein that imparts directionality on a chromatin insulator is an enhancer of position-effect variegation. Cell 82: 587–597.

    Article  PubMed  CAS  Google Scholar 

  • Geyer, P.K. & V.G. Corces, 1992. DNA position-specific repression of transcription by a Drosophilazinc finger protein. Genes Dev. 6: 1865–1873.

    PubMed  CAS  Google Scholar 

  • Hirschhorn, J.N., S.A. Brown, C.D. Clark & F. Winston, 1992. Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev. 6: 2288–2298.

    PubMed  CAS  Google Scholar 

  • Ji, H., D.P. Moore, M.A. Blomberg, L.T. Braiterman, D.F. Voytas, G. Natsoulis & J.D. Boeke, 1993. Hotspots for unselected Ty1 transposition events on yeast chromosome III are near tRNA genes and LTR sequences. Cell 73: 1007–1018.

    Article  PubMed  CAS  Google Scholar 

  • Kalpana, G.V., S. Marmon, W. Wang, G.R. Crabtree & S.P. Goff, 1994. Binding and stimulation of HIV-1 integrase by a human homolog of yeast transcription factor SNF5 (see comments). Science 266: 2002–2006.

    PubMed  CAS  Google Scholar 

  • Lajoinie, O., M.E. Drake, B. Dastugue & C. Vaury, 1995. Aberrant pre-mRNA maturation is caused by LINE insertions into introns of the white gene of Drosophila melanogaster. Nucleic Acids Res. 23: 4015–4022.

    PubMed  CAS  Google Scholar 

  • Leblanc, P., B. Dastugue & C. Vaury, 1999. The integration machinery of ZAM, a retroelement from Drosophila melanogaster, acts as a sequence-specific endonuclease. J. Virol. 73: 7061–7064.

    PubMed  CAS  Google Scholar 

  • Leblanc, P., S. Desset, B. Dastugue & C. Vaury, 1997. Invertebrate retroviruses: ZAM a new candidate in D. melanogaster. Embo J. 16: 7521–7531.

    Article  PubMed  CAS  Google Scholar 

  • Lohe, A.R., A.J. Hilliker & P.A. Roberts, 1993. Mapping simple repeated DNA sequences in heterochromatin of Drosophila melanogaster. Genetics 134: 1149–1174.

    PubMed  CAS  Google Scholar 

  • Pimpinelli, S., M. Berloco, L. Fanti, P. Dimitri, S. Bonaccorsi, E. Marchetti, R. Caizzi, C. Caggese & M. Gatti, 1995. Transposable elements are stable structural components of Drosophila melanogasterheterochromatin. Proc. Natl. Acad. Sci. USA 92: 3804–3808.

    Article  PubMed  CAS  Google Scholar 

  • Robertson, H.M., C.R. Preston, R.W. Phillis, D.M. Johnson-Schlitz, W.K. Benz & W.R. Engels, 1988. A stable genomic source of P element transposase in Drosophila melanogaster. Genetics 118: 461–470.

    PubMed  CAS  Google Scholar 

  • Sandmeyer, S.B., L.J. Hansen & D.L. Chalker, 1990. Integration specificity of retrotransposons and retroviruses. Annu. Rev. Genet. 24: 491–518.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, P. & A.C. Spradling, 1995. The Drosophilasalivary gland chromocenter contains highly polytenized subdomains of mitotic heterochromatin. Genetics 139: 659–670.

    PubMed  CAS  Google Scholar 

  • Zhu, Y., S. Zou, D.A. Wright & D.F. Voytas, 1999. Tagging chromatin with retrotransposons: target specificity of the Saccharomyces Ty5 retrotransposon changes with the chromosomal localization of Sir3p and Sir4p. Genes Dev. 13: 2738–2749.

    Article  PubMed  CAS  Google Scholar 

  • Zou, S. & D.F. Voytas, 1997. Silent chromatin determines target preference of the Saccharomyces retrotransposon Ty5. Proc. Natl. Acad. Sci. USA 94: 7412–7416.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conte, C., Calco, V., Desset, S. et al. Impact of Multiple Insertions of two Retroelements, ZAM and Idefix at an Euchromatic Locus. Genetica 109, 53–59 (2000). https://doi.org/10.1023/A:1026534207401

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026534207401

Navigation