Journal of Philosophical Logic

, Volume 29, Issue 5, pp 433–482 | Cite as

On Meaningfulness and Truth

  • Brian Edison McDonald
Article

Abstract

We show how to construct certain “LM, T-type” interpreted languages, with each such language containing meaningfulness and truth predicates which apply to itself. These languages are comparable in expressive power to the LT-type, truth-theoretic languages first considered by Kripke, yet each of our LM, T-type languages possesses the additional advantage that, within it, the meaninglessness of any given meaningless expression can itself be meaningfully expressed. One therefore has, for example, the object level truth (and meaningfulness) of the claim that the strengthened Liar is meaningless.

truth paradox liar meaningfulness variational semantics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  1. 1.
    Aczel, Peter and Feferman, Solomon, Consistency of the unrestricted abstraction principle using an intensional equivalence operator, in J. P. Seldin and H. Putnam (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, Academic Press Inc., New York, 1980, pp. 67-98.Google Scholar
  2. 2.
    Anderson, Alan R., St. Paul's epistle to Titus, in R. L. Martin (ed.), The Paradox of the Liar, Yale University Press, New Haven, 1970, pp. 1-11.Google Scholar
  3. 3.
    Barwise, Jon and Etchemendy, John, The Liar: An Essay on Truth and Circularity, Oxford University Press, New York, 1987.Google Scholar
  4. 4.
    Bealer, George, Quality and Concept, Oxford University Press, Oxford, 1982.Google Scholar
  5. 5.
    Belnap, Nuel D., Gupta's rule of revision theory of truth, J. Philos. Logic 11(1) (1982), 103-116.Google Scholar
  6. 6.
    Beth, Evert W., The Foundations of Mathematics, North-Holland, Amsterdam, 1965, p. 24.Google Scholar
  7. 7.
    Curry, Haskell B., Foundations of Mathematical Logic, McGraw-Hill, New York, 1963.Google Scholar
  8. 8.
    Feferman, Solomon, Toward useful type-free theories, I, in R. L. Martin (ed.), Recent Essays on Truth and the Liar Paradox, Oxford University Press, New York, 1984, pp. 237-287. This paper was also published under the same title in the J. Symbolic Logic 49(1) (1984), 75-111.Google Scholar
  9. 9.
    Fitch, Frederic B., An extension of basic logic, J. Symbolic Logic 13(3) (1948), 95-106.Google Scholar
  10. 10.
    Gaifman, Haim, Pointers to truth, J. Philos. 89(5) (1992), 223-261.Google Scholar
  11. 11.
    Gilmore, Paul. C., The consistency of partial set theory without extensionality, in T. Jech (ed.), Axiomatic Set Theory, Proceedings of Symposia in Pure Mathematics, Vol. 13, part 2, Amer. Math. Soc., Providence, 1974, pp. 147-153.Google Scholar
  12. 12.
    Gödel, Kurt, Russell's mathematical logic, in P. Benacerraf and H. Putnam (eds), Philosophy of Mathematics, Prentice-Hall, Englewood Cliffs, New Jersey, 1964, pp. 211-232. (See pp. 228-229.) This paper is a reprint under the same title, from The Philosophy of Bertrand Russell, The Library of Living Philosophers, P. A. Schilpp (ed.), 1944, pp. 125-153. (Tudor Publishing Co, New York) (See p. 149.)Google Scholar
  13. 13.
    Gupta, Anil, Truth and paradox, J. Philos. Logic 11(1) (1982), 1-60.Google Scholar
  14. 14.
    Gupta, Anil and Martin, Robert L., A fixed point theorem for the weak Kleene valuation scheme, J. Philos. Logic 13(2) (1984), 131-135.Google Scholar
  15. 15.
    Gupta, Anil, Two theorems concerning stability, in J. M. Dunn and A. Gupta (eds.), Truth or Consequences (Essays in Honor of Nuel Belnap), Kluwer Academic Publishers, Dordrecht, Netherlands, 1990, pp. 49-60.Google Scholar
  16. 16.
    Gupta, Anil and Belnap, Nuel D., The Revision Theory of Truth, MIT Press, Cambridge, Massachusetts, 1993.Google Scholar
  17. 17.
    Herzberger, Hans G., Naive semantics and the Liar paradox, J. Philos. 79(9) (1982), 479-497.Google Scholar
  18. 18.
    Herzberger, Hans G., Notes on naive semantics, J. Philos. Logic 11(1) (1982), 61-102.Google Scholar
  19. 19.
    Jech, Thomas J., Lectures in Set Theory, Lecture Notes in Math. 217, Springer-Verlag, New York, 1971, pp. 36-37.Google Scholar
  20. 20.
    Kleene, Stephen C., Introduction to Metamathematics, North-Holland, Amsterdam, 1964. (See pp. 332-340.)Google Scholar
  21. 21.
    Kneale, William and Kneale, Martha, The Development of Logic, Oxford University Press, London, 1964.Google Scholar
  22. 22.
    Kripke, Saul, Outline of a theory of truth, J. Philos. 72(19) (1975), 690-716.Google Scholar
  23. 23.
    Malitz, Jerome, Introduction to Mathematical Logic, Springer-Verlag, New York, 1979. (See p. 122.)Google Scholar
  24. 24.
    Martin, Robert L., A category solution to the Liar, in R. L. Martin (ed.), The Paradox of the Liar, Yale University Press, New Haven, 1970, pp. 91-112.Google Scholar
  25. 25.
    Martin, Robert L. and Woodruff, Peter W., On representing 'True-in-L’ in L, Philosophia 5(3) (1975), 213-217.Google Scholar
  26. 26.
    Mates, Benson, Stoic Logic, University of California Press, Berkeley, 1973.Google Scholar
  27. 27.
    McDonald, Brian Edison, Towards a theory of meaningfulness and truth: An introduction to variational semantics, Doctoral Dissertation, Department of Mathematics, University of Colorado at Boulder, 1992.Google Scholar
  28. 28.
    McGee, Vann, Applying Kripke's theory of truth, J. Philos. 86(10) (1989), 530-539.Google Scholar
  29. 29.
    McGee, Vann, Truth, Vagueness, and Paradox: An Essay on the Logic of Truth, Hackett Publishing Company, Indianapolis, 1990.Google Scholar
  30. 30.
    Monk, J. Donald, Mathematical Logic, Graduate Texts in Math. 37, Springer-Verlag, New York, 1976.Google Scholar
  31. 31.
    Mostowski, Andrzej, Alfred Tarski, in Encyclopedia of Philosophy 8, The Macmillan Company and the Free Press, New York, 1967, pp. 77-81. (See pp. 78-80.)Google Scholar
  32. 32.
    O'Carroll, M. J., A three-valued, non-levelled logic consistent for all self-reference, Logique et Analyse 10e année no. 38 (1967), 173-178.Google Scholar
  33. 33.
    Perlis, Donald, Languages with self-reference I: Foundations, Artif. Intell. 25(3) (1985), 301-322.Google Scholar
  34. 34.
    Prior, Arthur N., Correspondence theory of truth, in Encyclopedia of Philosophy 2, The Macmillan Company and the Free Press, New York, 1967, pp. 223-232. (See pp. 230-231.)Google Scholar
  35. 35.
    Ramsey, Frank P., The foundations of mathematics, in R. B. Braithwaite (ed.), The Foundations of Mathematics and other Logical Essays, Routledge and Kegan Paul Ltd., London, 1931, pp. 1-61. (See pp. 20-21.) This paper is a reprint, under the same title, from the Proc. London Math. Soc. Ser. 2 25 (1926), 338-384. (See pp. 352-354.)Google Scholar
  36. 36.
    Reinhardt, William N., Some remarks on extending and interpreting theories with a partial predicate for truth, J. Philos. Logic 15(2) (1986), 219-251.Google Scholar
  37. 37.
    Reinhardt, William N., Remarks on significance and meaningful applicability, in L. P. de Alcantara (ed.), Mathematical Logic and Formal Systems: A Collection of Papers in Honor of Professor Newton C. A. da Costa, Lecture Notes in Pure and Appl. Math. 94, Marcel Dekker, New York, 1985, pp. 227-242.Google Scholar
  38. 38.
    Reinhardt, William N., Necessity predicates and operators, J. Philos. Logic 9(4) (1980), 437-450. (See p. 450.)Google Scholar
  39. 39.
    Sagan, Hans, Introduction to the Calculus of Variations, Internat. Ser. in Pure and Appl. Math., McGraw-Hill, New York, 1969. (See pp. 25-34.)Google Scholar
  40. 40.
    Skyrms, Brian, Return of the Liar: Three-valued logic and the concept of truth, Amer. Philos. Quart. 7(2) (1970), 153-161.Google Scholar
  41. 41.
    Skyrms, Brian, Notes on quantification and self-reference, in R. L. Martin (ed.), The Paradox of the Liar, Yale University Press, New Haven, 1970, pp. 67-74. (See pp. 68-69.)Google Scholar
  42. 42.
    Tarski, Alfred, The concept of truth in formalized languages, in J. Corcoran (ed.), J. H. Woodger (transl.), Logic, Semantics, Metamathematics, 2nd edn., Hackett Publishing Co., Indianapolis, 1983, pp. 152-278. (1st ed. Oxford University Press, 1956). This paper was published in Warsaw in its original form, in Polish, in 1933–under the title Pojecie prawdy w jezykach nauk dedukcyjnych (On the concept of truth in languages of the deductive sciences).Google Scholar
  43. 43.
    Van Fraassen, Bas, Singular terms, truth-value gaps, and free logic, J. Philos. 63(17) (1966), 481-495.Google Scholar
  44. 44.
    Van Fraassen, Bas, Truth and paradoxical consequences, in R. L. Martin (ed.), The Paradox of the Liar, Yale University Press, New Haven, 1970, pp. 13-23.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Brian Edison McDonald
    • 1
  1. 1.Department of PhilosophyIndiana UniversityBloomingtonUSA

Personalised recommendations