Skip to main content

Responses of the macroalga Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress

Abstract

Chlorophyll (Chl), phycoerythrin (PE), total nitrogen (TN% dw) and Fein tissues were measured in Fe-deficient cultures of Gracilariatenuistipitata var. liui over a period of 60 days. 55Fe uptakeand photosynthetic carbon fixation (NaH14CO3) werecompared in Fe-rich and Fe-deficient cultures and analyzed the effects ofFe-deficiency on the ultrastructure. The maximum carbon fixationdecreased significantly (p < 0.01) under Fe-deficiency. Thechlorophyll and phycoerythrin contents also declined with decreasing tissueiron content, falling, respectively, to 7.9 and 33.8% of their originallevel. Photosynthesis in Fe-deficient cells became light-saturated at lowerirradiance than the control. Total N in tissue decreased from 3.65 to2.49%. 55Fe uptake rate for cultures grown on NO3 -was measured following resuspension in either NH4 + orNO3 - as N source. Enhanced Fe uptake developedunder Fe stress, especially with cells resuspended in NH+ 4-N medium. The Vmaxfor Fe uptake was higher with NH4 + thanNO3 - (62.8 versus 12.1 pmol mg dw-1 h-1). The requirement for N accelerates further Fe uptake. Ultrastructuralobservations of Fe-deficient cells showed reductions in chloroplast number,degeneration of lamellar organization, decrease in mitochondrial matrixdensity and variation in accumulation body number and morphology. During Fe-deficiency, the growth rate continued to decline and after 40days of iron deficiency, no further growth was detectable, and eventuallyiron deficiency resulted in chlorosis. The results suggest that the lowergrowth rate of Gracilaria tenuistipitata var. liui underFe-deficiency may result from largely from inhibition of photosynthesis andnitrogen utilization.

This is a preview of subscription content, access via your institution.

References

  • Boyd PW, Muggli DL, Varela DE, Goldblatt RH, Chretien R, Oreans KJ, Harrison PJ (1996) In vitro iron enrichment experiments in the N-E Subartic Pacific. Mar. Ecol. Prog. Ser. 136: 179-193.

    Google Scholar 

  • Boyer GL, Gilliam AH, Trick C (1987) Iron chelation and uptake. In Fay P, Van Baalen C (eds), The Cyanobacteria. Elsevier, Amsterdam, pp. 415-436.

    Google Scholar 

  • Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez EP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Contantinou J, Rollwangen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystemscale iron fertilization experiment in the equatorial Pacific Ocean. Nature, Lond. 383: 495-501.

    Google Scholar 

  • Doucette DJ, Harrison PJ (1991) Aspects of iron and nitrogen nutrition in the red tide dinoflagellate Gymnodinium sanguineum. Mar. Biol. 110: 175-182.

    Google Scholar 

  • Doucette GJ, Harrison PJ (1990) Some effects of iron and nitrogen stress on the red tide dinoflagellate Gymnodinium sanguineum. Mar. Ecol. Prog. Ser. 62: 293-306.

    Google Scholar 

  • Evans JC, Prepas EE (1997) Relative importance of iron and molybdenum in restriction phytoplankton biomass in high phosphorus saline lakes. Limnol oceanogr. 42(3): 461-472.

    Google Scholar 

  • Gagne JA, Larochelle J, Crdinal A (1979) Solubilization technique to prepare algal tissue for liquid scinitillation counting, with reference to Fucus vesiculosus L. Phycologia 18: 168-170.

    Google Scholar 

  • Gledhill M, van den Berg CMG, Nolting RF, Timmermans KR (1998) Variability in the speciation of iron in the northern North Sea. Mar. Chem. 59: 283-300.

    Google Scholar 

  • Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron deficiency on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772-1782.

    Google Scholar 

  • Harrison GI, Morel FMM (1986) Response of the marine diatom Thalassiosira weissflogii to iron stress. Limnol. Oceanogr. 31: 989-997.

    Google Scholar 

  • Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 688-701.

    Google Scholar 

  • Hudson RJM, Morel FMM (1989) Distinguishing between extraand intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34: 1113-1120.

    Google Scholar 

  • Hudson RJM, Morel FMM (1990) Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 35: 1002-1020.

    Google Scholar 

  • Kudo I, Harrison PJ (1997) Effect of iron nutrition on the marine cyanobacteriumSynechococcus grown on different N sources and irradiances. Limnol. Oceanogr. 33: 232-240.

    Google Scholar 

  • Manley SL (1981) Iron uptake and translocation by Macrocystis pyrifera. Plant Physiol. 68: 914-918.

    Google Scholar 

  • Marquardt J, Schultze A, Rosenkranz V, Wehrmeyer W (1999) Ultrastructure and photosynthetic apparatus of Rhodella violacea (Porphyridiales, Rhodophyta) grown under iron-deficiency conditions. Phycologia 38: 418-427.

    Google Scholar 

  • Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5: 1-13.

    Google Scholar 

  • Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, Lond. 331: 341-343.

    Google Scholar 

  • McGlathery KJ (1996) Changes in intercellular N pools and feedback controls on N uptake in Chaetomorpha linum. J. Phycol. 32: 393-401.

    Google Scholar 

  • McGlathery KJ, Pedersed MF (1999) The effect of growth irradiance on the coupling of carbon and nitrogen metabolism in Chaetomorpha linum (Chlorophyta). J. Phycol. 35: 721-731.

    Google Scholar 

  • Milligan AJ, Harrison PJ (2000) Effects of non-steady-state iron limitation on nitrogen assimilatory enzyme in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 36: 78-86.

    Google Scholar 

  • Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 69: 1376-1381.

    Google Scholar 

  • Morel FMM, Rueter JG (1979) Aquil: A chemically defined phytoplankton culture medium for trace metal studies. J. Phycol. 15: 135-141.

    Google Scholar 

  • Naldi M, Wheeler PA (1999) Changes in nitrogen pools in Ulva fenestrata and Gracilaria pacifica under nitrate and ammonium enrichment. J. Phycol. 35: 70-77.

    Google Scholar 

  • Price NM, Andersen LF, Morel FMM (1991) Iron and nitrogen nutrition of equatorial Pacific plankton. Deep-Sea Res. 38: 1361-1378.

    Google Scholar 

  • Raven JA (1988) The iron and molybdenum use efficiencies of plant-growth with different energy, carbon and nitrogen-sources. New Phytol. 109: 279-287.

    Google Scholar 

  • Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, Lond. 390: 389-392.

    Google Scholar 

  • Suzuki Y, Kuma K, Kudo I, Matsunaga K (1995) Iron requirement of the brown macroalgae Laminaria japonica, Undaria pinnatifida (Phaeophyta) and the crustose coralline alga Lithophyllum yessoense (Rhodophyta), and their competition in the northern Japan Sea. Phycologia 34: 201-205.

    Google Scholar 

  • Timmermans KR, Van leeuwe MA, De Jong JTM, Mckay RML, Nolting RF, Witte HJ, Van Ooyen J, Swagerman MJW, Kloosterhuit H, De Baar HJW (1998) Iron stress in the Pacific region of the Southern Ocean: evidence from enrichment bioassays. Mar. Ecol. Progr. Ser. 166: 27-41.

    Google Scholar 

  • Trick CG, Anderson RJ, Gillam A, Harrison PJ (1983) Prorocentrin: An extracellular siderophore produced by the marine dinoflagellate Procentrum minimum. Science. 219: 306-308.

    Google Scholar 

  • Weinberg ED (1989) Cellular regulation of iron assimilation. Q. Rev. Biol. 64: 261-290.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Liu, J., Dong, S., Liu, X. et al. Responses of the macroalga Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress. Journal of Applied Phycology 12, 605–612 (2000). https://doi.org/10.1023/A:1026523213818

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026523213818

  • carbon fixation
  • Gracilaria tenuistipitata var. liui
  • iron stress
  • iron uptake