Abstract
Chlorophyll (Chl), phycoerythrin (PE), total nitrogen (TN% dw) and Fein tissues were measured in Fe-deficient cultures of Gracilariatenuistipitata var. liui over a period of 60 days. 55Fe uptakeand photosynthetic carbon fixation (NaH14CO3) werecompared in Fe-rich and Fe-deficient cultures and analyzed the effects ofFe-deficiency on the ultrastructure. The maximum carbon fixationdecreased significantly (p < 0.01) under Fe-deficiency. Thechlorophyll and phycoerythrin contents also declined with decreasing tissueiron content, falling, respectively, to 7.9 and 33.8% of their originallevel. Photosynthesis in Fe-deficient cells became light-saturated at lowerirradiance than the control. Total N in tissue decreased from 3.65 to2.49%. 55Fe uptake rate for cultures grown on NO3 -was measured following resuspension in either NH4 + orNO3 - as N source. Enhanced Fe uptake developedunder Fe stress, especially with cells resuspended in NH+ 4-N medium. The Vmaxfor Fe uptake was higher with NH4 + thanNO3 - (62.8 versus 12.1 pmol mg dw-1 h-1). The requirement for N accelerates further Fe uptake. Ultrastructuralobservations of Fe-deficient cells showed reductions in chloroplast number,degeneration of lamellar organization, decrease in mitochondrial matrixdensity and variation in accumulation body number and morphology. During Fe-deficiency, the growth rate continued to decline and after 40days of iron deficiency, no further growth was detectable, and eventuallyiron deficiency resulted in chlorosis. The results suggest that the lowergrowth rate of Gracilaria tenuistipitata var. liui underFe-deficiency may result from largely from inhibition of photosynthesis andnitrogen utilization.
This is a preview of subscription content, access via your institution.
References
Boyd PW, Muggli DL, Varela DE, Goldblatt RH, Chretien R, Oreans KJ, Harrison PJ (1996) In vitro iron enrichment experiments in the N-E Subartic Pacific. Mar. Ecol. Prog. Ser. 136: 179-193.
Boyer GL, Gilliam AH, Trick C (1987) Iron chelation and uptake. In Fay P, Van Baalen C (eds), The Cyanobacteria. Elsevier, Amsterdam, pp. 415-436.
Coale KH, Johnson KS, Fitzwater SE, Gordon RM, Tanner S, Chavez EP, Ferioli L, Sakamoto C, Rogers P, Millero F, Steinberg P, Nightingale P, Cooper D, Cochlan WP, Landry MR, Contantinou J, Rollwangen G, Trasvina A, Kudela R (1996) A massive phytoplankton bloom induced by an ecosystemscale iron fertilization experiment in the equatorial Pacific Ocean. Nature, Lond. 383: 495-501.
Doucette DJ, Harrison PJ (1991) Aspects of iron and nitrogen nutrition in the red tide dinoflagellate Gymnodinium sanguineum. Mar. Biol. 110: 175-182.
Doucette GJ, Harrison PJ (1990) Some effects of iron and nitrogen stress on the red tide dinoflagellate Gymnodinium sanguineum. Mar. Ecol. Prog. Ser. 62: 293-306.
Evans JC, Prepas EE (1997) Relative importance of iron and molybdenum in restriction phytoplankton biomass in high phosphorus saline lakes. Limnol oceanogr. 42(3): 461-472.
Gagne JA, Larochelle J, Crdinal A (1979) Solubilization technique to prepare algal tissue for liquid scinitillation counting, with reference to Fucus vesiculosus L. Phycologia 18: 168-170.
Gledhill M, van den Berg CMG, Nolting RF, Timmermans KR (1998) Variability in the speciation of iron in the northern North Sea. Mar. Chem. 59: 283-300.
Greene RM, Geider RJ, Falkowski PG (1991) Effect of iron deficiency on photosynthesis in a marine diatom. Limnol. Oceanogr. 36: 1772-1782.
Harrison GI, Morel FMM (1986) Response of the marine diatom Thalassiosira weissflogii to iron stress. Limnol. Oceanogr. 31: 989-997.
Howarth RW, Marino R, Cole JJ (1988) Nitrogen fixation in freshwater, estuarine, and marine ecosystems. 1. Rates and importance. Limnol. Oceanogr. 33: 688-701.
Hudson RJM, Morel FMM (1989) Distinguishing between extraand intracellular iron in marine phytoplankton. Limnol. Oceanogr. 34: 1113-1120.
Hudson RJM, Morel FMM (1990) Iron transport in marine phytoplankton: Kinetics of cellular and medium coordination reactions. Limnol. Oceanogr. 35: 1002-1020.
Kudo I, Harrison PJ (1997) Effect of iron nutrition on the marine cyanobacteriumSynechococcus grown on different N sources and irradiances. Limnol. Oceanogr. 33: 232-240.
Manley SL (1981) Iron uptake and translocation by Macrocystis pyrifera. Plant Physiol. 68: 914-918.
Marquardt J, Schultze A, Rosenkranz V, Wehrmeyer W (1999) Ultrastructure and photosynthetic apparatus of Rhodella violacea (Porphyridiales, Rhodophyta) grown under iron-deficiency conditions. Phycologia 38: 418-427.
Martin JH (1990) Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5: 1-13.
Martin JH, Fitzwater SE (1988) Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature, Lond. 331: 341-343.
McGlathery KJ (1996) Changes in intercellular N pools and feedback controls on N uptake in Chaetomorpha linum. J. Phycol. 32: 393-401.
McGlathery KJ, Pedersed MF (1999) The effect of growth irradiance on the coupling of carbon and nitrogen metabolism in Chaetomorpha linum (Chlorophyta). J. Phycol. 35: 721-731.
Milligan AJ, Harrison PJ (2000) Effects of non-steady-state iron limitation on nitrogen assimilatory enzyme in the marine diatom Thalassiosira weissflogii (Bacillariophyceae). J. Phycol. 36: 78-86.
Moran R (1982) Formulae for determination of chlorophyllous pigments extracted with N, N-dimethylformamide. Plant Physiol. 69: 1376-1381.
Morel FMM, Rueter JG (1979) Aquil: A chemically defined phytoplankton culture medium for trace metal studies. J. Phycol. 15: 135-141.
Naldi M, Wheeler PA (1999) Changes in nitrogen pools in Ulva fenestrata and Gracilaria pacifica under nitrate and ammonium enrichment. J. Phycol. 35: 70-77.
Price NM, Andersen LF, Morel FMM (1991) Iron and nitrogen nutrition of equatorial Pacific plankton. Deep-Sea Res. 38: 1361-1378.
Raven JA (1988) The iron and molybdenum use efficiencies of plant-growth with different energy, carbon and nitrogen-sources. New Phytol. 109: 279-287.
Sunda WG, Huntsman SA (1997) Interrelated influence of iron, light and cell size on marine phytoplankton growth. Nature, Lond. 390: 389-392.
Suzuki Y, Kuma K, Kudo I, Matsunaga K (1995) Iron requirement of the brown macroalgae Laminaria japonica, Undaria pinnatifida (Phaeophyta) and the crustose coralline alga Lithophyllum yessoense (Rhodophyta), and their competition in the northern Japan Sea. Phycologia 34: 201-205.
Timmermans KR, Van leeuwe MA, De Jong JTM, Mckay RML, Nolting RF, Witte HJ, Van Ooyen J, Swagerman MJW, Kloosterhuit H, De Baar HJW (1998) Iron stress in the Pacific region of the Southern Ocean: evidence from enrichment bioassays. Mar. Ecol. Progr. Ser. 166: 27-41.
Trick CG, Anderson RJ, Gillam A, Harrison PJ (1983) Prorocentrin: An extracellular siderophore produced by the marine dinoflagellate Procentrum minimum. Science. 219: 306-308.
Weinberg ED (1989) Cellular regulation of iron assimilation. Q. Rev. Biol. 64: 261-290.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Liu, J., Dong, S., Liu, X. et al. Responses of the macroalga Gracilaria tenuistipitata var. liui (Rhodophyta) to iron stress. Journal of Applied Phycology 12, 605–612 (2000). https://doi.org/10.1023/A:1026523213818
Issue Date:
DOI: https://doi.org/10.1023/A:1026523213818
- carbon fixation
- Gracilaria tenuistipitata var. liui
- iron stress
- iron uptake