Skip to main content
Log in

Intermittent heating in a model of solar coronal loops

  • Published:
Solar Physics Aims and scope Submit manuscript

Abstract

X-ray and EUV observations of the solar corona reveal a very complex and dynamic environment where there are many examples of structures that are believed to outline the Sun's magnetic field. In this present study, the authors investigate the temporal response of the temperature, density and pressure of a solar coronal plasma contained within a magnetic loop to an intermittent heating source generated by Ohmic dissipation. The energy input is produced by a one-dimensional MHD flare model. This model is able to reproduce some of the statistical properties derived from X-ray flare observations. In particular the heat deposition consists of both a sub-flaring background and much larger, singular dissipative events. Two different heating profiles are investigated: (a) the spatial average of the square of the current along the loop and (b) the maximum of the square of the current along the loop. For case (a), the plasma parameters appear to respond more to the global variations in the heat deposition about its average value rather than to each specific event. For case (b), the plasma quantities are more intermittent in their evolution. In both cases the density response is the least bursty signal. It is found that the time-dependent energy input can maintain the plasma at typical coronal temperatures. Implications of these results upon the latest coronal observations are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bak, P., Tang, C., and Wiesenfeld, K.: 1987, Phys. Rev. Lett. 59, 381.

    Google Scholar 

  • Berghmans, D. and Clette, F.: 1999, Solar Phys. 186, 207.

    Google Scholar 

  • Boffetta, G., Carbone, V., Giuliani, P., Veltri, P., and Vulpiani, A.: 1999 Phys. Rev. Lett. 83, 4662.

    Google Scholar 

  • Braginskii, S. I.: 1965, Rev. Plasma Phys. 1, 205.

    Google Scholar 

  • Chupp, E. L.: 1990, Astrophys. J. 73, 213.

    Google Scholar 

  • Cook, J. W., Cheng, C.-C., Jacobs, V. L., and Antiochos, S. K.: 1989, Astrophys. J. 338, 1176.

    Google Scholar 

  • Crosby, N. B.: 1996, PhD Thesis, Université de Paris VII, France.

  • Crosby, N. B., Aschwanden, M. J. and Dennis, B. R.: 1993, Solar Phys. 143, 275.

    Google Scholar 

  • Dmitruk, P., Gómez, D. O., and DeLuca, E. E.: 1998, Astrophys. J. 505, 974.

    Google Scholar 

  • Einaudi, G., Velli, M., Politano, H., and Pouquet, A.: 1996, Astrophys. J. 457, L113.

    Google Scholar 

  • Frisch, U., Pouquet, A., Sulem, P. L., and Meneguzzi, M.: 1983, J. Mécanique Théor. Appl. 20, 191.

    Google Scholar 

  • Galsgaard, K. and Nordlund, A.: 1996, J. Geophys. Res. 101, 13445.

    Google Scholar 

  • Galtier, S.: 1999, Astrophys. J. 521, 483.

    Google Scholar 

  • Galtier, S.: 2000, Solar Phys., submitted.

  • Galtier, S. and Pouquet, A.: 1998, Solar Phys. 179, 141.

    Google Scholar 

  • Galtier, S. and Walsh, R. W.: 2000, Solar Phys., in preparation.

  • Georgoulis, M. K. and Vlahos, L.: 1998, Astron. Astrophys. 336, 721.

    Google Scholar 

  • Georgoulis, M. K., Velli, M., and Einaudi, G.: 1998, Astrophys. J. 497, 957.

    Google Scholar 

  • Hudson, H.: 1991, Solar Phys. 133, 357.

    Google Scholar 

  • Hwa, T. and Kardar, M.: 1992, Phys. Rev. A45, 7002.

    Google Scholar 

  • Kadanoff, L. P., Nagel, S. R., Wu, L., and Zhou, S.: 1989, Phys. Rev. A39, 6524.

    Google Scholar 

  • Klimchuk, J. A., Lemen, J. R., Feldman, U., Tsuneta, S., and Uchida, Y.: 1992, Publ. Astron. Soc. Japan 44, L181.

    Google Scholar 

  • Krucker, S. and Benz, A. O.: 1998, Astrophys. J. 501, L213.

    Google Scholar 

  • Lu, E. T. and Hamilton, R. J.: 1991, Astrophys. J. 380, L89.

    Google Scholar 

  • Mariska, J. T.: 1987, Astrophys. J. 319, 465.

    Google Scholar 

  • Mercier, C. and Trottet, G.: 1997, Astrophys. J. 474, L65.

    Google Scholar 

  • Parker, E. N.: 1988, Astrophys. J. 330, 474.

    Google Scholar 

  • Parker, E. N.: 1994, Spontaneous Current Sheets in Magnetic Fields, International Series on Astronomy and Astrophysics, Oxford University Press, Oxford.

    Google Scholar 

  • Pearce, G., Rowe, A. K., and Yeung, J.: 1993, Astrophys. Space Sci. 208, 99.

    Google Scholar 

  • Priest, E. R.: 1982, Solar Magnetohydrodynamics, D. Reidel Publ. Co., Dordrecht, Holland.

    Google Scholar 

  • Priest, E. R., Foley, C. R., Heyvaerts, J., Arber, T. D., Culhane, J. L., and Acton, L. W: 1998, Nature 393, 545.

    Google Scholar 

  • Schrijver, C. J. et al.: 1999, Solar Phys. 187, 261.

    Google Scholar 

  • Spitzer, L.: 1962, Physics of Fully Ionized Gases, Interscience, New York.

    Google Scholar 

  • Vlahos, L., Georgoulis, M., Kluiving, R., and Paschos, P.: 1995, Astron. Astrophys. 299, 897.

    Google Scholar 

  • Walsh, R. W.: 1999, Proceedings of 8th SOHO Workshop, SP-446, 81.

    Google Scholar 

  • Walsh, R. W., Bell, G. E., and Hood, A. W.: 1995, Solar Phys. 161, 83.

    Google Scholar 

  • Walsh, R. W., Bell, G. E., and Hood, A. W.: 1996, Solar Phys. 169, 33.

    Google Scholar 

  • Walsh, R. W., Bell, G. E., and Hood, A. W.: 1997, Solar Phys. 171, 81.

    Google Scholar 

  • Walsh, R. W., Ireland, J., Harrison, R. A., and Priest, E. R.: 1997, ESA SP404, 717.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, R., Galtier, S. Intermittent heating in a model of solar coronal loops. Solar Physics 197, 57–73 (2000). https://doi.org/10.1023/A:1026520614533

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026520614533

Keywords

Navigation