Skip to main content
Log in

Requirement for cytoplasmic protein synthesis during circadian peaks of transcription of chloroplast-encoded genes in Chlamydomonas

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Cycloheximide, an inhibitor of cytoplasmic translation, induced a rapid reduction of 70–80% in levels of mRNA for the chloroplast elongation factor Tu (tufA) in asynchronously growing Chlamydomonas. This effect was shown to be mainly transcriptional, and not restricted to tufA, as transcription of other chloroplast-encoded genes were cycloheximide-sensitive, although not all equally (psbA showed no more than 40% inhibition). Confirmatory evidence that the inhibition of chloroplast transcription was mainly due to blocking cytoplasmic translation was obtained with the cycloheximide-resistant mutant act1, and by using another translation inhibitor, anisomycin. In synchronously growing Chlamydomonas, chloroplast transcription is regulated by the circadian clock, with the daily peak occurring during the early light period. When cycloheximide was added during this period, transcription was inhibited, but not when it was added during the trough period (late light to early dark). Moreover, in synchronized cells switched to continuous light, the drug blocked the scheduled increase in tufA mRNA, but did not remove the pre-existing mRNA. These experiments define two functionally different types of chloroplast transcription in Chlamydomonas, basal (cycloheximide-insensitive) and clock-induced (cycloheximide-sensitive), and indicate that the relative contribution of each type to the overall transcription of a given gene are not identical for all genes. The results also provide evidence for nuclear regulation of chloroplast transcription, thereby obviating the need for an organellar clock, at least for these rhythms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, L.A., Simon, L.D. and Maliga, P. 1995. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. EMBO J. 11: 2802–2809.

    Google Scholar 

  • Baginsky, S., Tiller, K. and Link, G. 1997. Transcription factor phosphorylation by a protein kinase associated with chloroplast RNA polymerase from mustard (Sinapis alba). Plant Mol. Biol. 34: 181–189.

    PubMed  Google Scholar 

  • Chua, N.H. and Gillham, N.W. 1977. The sites of synthesis of the principal thylakoid membrane polypeptides in Chlamydomonas reinhardtii. J. Cell Biol. 74: 441–452.

    PubMed  Google Scholar 

  • Deshpande, N.N., Bao, Y. and Herrin, D.L. 1997. Evidence for light/redox-regulated splicing of psbA pre-RNAs in Chlamydomonas chloroplasts. RNA 3: 37–48.

    PubMed  Google Scholar 

  • Doi, R.H. and Wang, L.-F. 1986. Multiple prokaryotic ribonucleic acid polymerase sigma factors. Microbiol. Rev. 50: 227–243.

    PubMed  Google Scholar 

  • Fleming, G.H., Boynton, J.E. and Gillham, N.W. 1987. The cytoplasmic ribosomes of Chlamydomonas reinhardtii: characterization of antibiotic sensitivity and cycloheximide-resistant mutants. Mol. Gen. Genet. 210: 419–428.

    PubMed  Google Scholar 

  • Fong, S. and Surzycki, S. 1992. Chloroplast RNA polymerase genes of Chlamydomonas reinhardtii exhibit an unusual structure and arrangement. Curr. Genet. 21: 485–497.

    PubMed  Google Scholar 

  • Gamble, P. and Mullet, J.E. 1989. Blue light regulates the accumulation of two psbD-psbC transcripts in barley chloroplasts. EMBO J. 8: 2785–2794.

    PubMed  Google Scholar 

  • Greenberg, B.M., Narita, J.O., DeLuca-Flaherty, C., Gruissem, W., Rushlow, K.A. and Hallick, R.B. 1984. Evidence for two RNA polymerase activities in Euglena gracilis chloroplasts. J. Biol. Chem. 259: 14880–14887.

    PubMed  Google Scholar 

  • Goldschmidt-Clermont, G. 1998. Coordination of nuclear and chloroplast gene expression in plant cells. Int. Rev. Cytol. 177: 115–180.

    PubMed  Google Scholar 

  • Gruissem, W. and Tonkyn, J.C. 1993. Control mechanisms of plastid gene expression. Crit. Rev. Plant Sci. 12: 19–57.

    Google Scholar 

  • Guertin, M. and Bellemare, G. 1979. Synthesis of chloroplast ribonucleic acid in Chlamydomonas reinhardtii toluene-treated cells. Eur. J. Biochem. 96: 125–129.

    PubMed  Google Scholar 

  • Harris, E. 1989. The Chlamydomonas Sourcebook. Academic Press, San Diego, CA.

    Google Scholar 

  • Hedtke, B., Börner, T. and Weihe, A. 1997. Mitochondrial and chloroplast phage-type RNA polymerases in Arabidopsis. Science277: 809–811.

    PubMed  Google Scholar 

  • Herrin, D.L. and G.W. Schmidt. 1987. Chloroplast gene expression in chloroplast ribosome-deficient mutants of Chlamydomonas reinhardtii. In: J. Biggins (Ed.) Progress in Photosynthesis Research, Vol. IV, Martinus Nijhoff, Dordrecht, Netherlands, pp. 645–648.

    Google Scholar 

  • Herrin, D.L. and Schmidt, G.W. 1988. Rapid, reversible staining of northern blots prior to hybridization. Biotechniques 6: 196–200.

    Google Scholar 

  • Herrin, D.L., Michaels, A.S. and Paul, A.-L. 1986. Regulation of genes encoding the large subunit of ribulose-1,5-bisphosphate carboxylase and the photosystem II polypeptides D-1 and D-2 during the cell cycle of Chlamydomonas reinhardtii. J. Cell Biol. 103: 1837–1845.

    PubMed  Google Scholar 

  • Hoober, J.K. 1970. Sites of synthesis of chloroplast membrane polypeptides in Chlamydomonas reinhardii y-1. J. Biol. Chem. 245: 4327–4334.

    PubMed  Google Scholar 

  • Hwang, S. and Herrin, D.L. 1994. Circadian regulation of lhc gene transcription in Chlamydomonas reinhardtii. PlantMol. Biol. 26: 557–569.

    Google Scholar 

  • Hwang, S., Kawazoe, R. and Herrin, D.L. 1996. Transcription of tufA and other chloroplast-encoded genes is regulated by a circadian clock in Chlamydomonas. Proc. Natl. Acad. Sci. USA 93: 996–1000.

    PubMed  Google Scholar 

  • Isono, K., Shimizu, M., Yoshimoto, K., Niwa, Y., Satoh, K., Yokota, A. and Kobayashi, H. 1997. Leaf-specifically expressed genes for polypeptides destined for chloroplasts with domains of σ 70 factors of bacterial RNA polymerases in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 94: 14984–14953.

    Google Scholar 

  • Jacobshagen, S., Kindle, K.L. and Johnson, C.H. 1996. Transcription of CABII is regulated by the biological clock in Chlamydomonas reinhardtii. Plant Mol. Biol. 31: 1173–1184.

    PubMed  Google Scholar 

  • Jahn, D. 1992. Expression of the Chlamydomonas reinhardtii chloroplast tRNAglu gene in a homologous in vitro transcription system is independent of upstream promoter elements. Arch. Biochem. Biophys. 298: 505–513.

    PubMed  Google Scholar 

  • Johnson, C.H., Golden, S.S., Ishiura, M. and Kondo, T. 1996. Circadian clocks in prokaryotes. Mol. Microbiol. 21: 5–11.

    PubMed  Google Scholar 

  • Kapoor, S., Suzuki, J.Y. and Sugiura, M. 1997. Identification and functional significance of a new class of non-consensus-type plastid promoters. Plant J. 11: 327–337.

    PubMed  Google Scholar 

  • Kestermann, M., Neukirchen, S., Kloppstech, K. and Link, G. 1998. Sequence and expression characteristics of a nuclear-encoded chloroplast sigma factor from mustard (Sinapis alba). Nucl. Acids Res. 26: 2747–2753.

    PubMed  Google Scholar 

  • Kindle, K.L. 1987. Expression of a gene for a light-harvesting chlorophyll a/b-binding protein in Chlamydomonas reinhardtii: effect of light and acetate. Plant Mol. Biol. 9: 547–563.

    Google Scholar 

  • Klein R.R. 1991. Regulation of light-induced chloroplast transcription and translation in eight-day-old dark-grown barley seedlings. Plant Physiol 97: 335–342.

    Google Scholar 

  • Lam, E. and Chua, N.-H. 1987. Chloroplast DNA gyrase and in vitro regulation of transcription by template topology and novobiocin. Plant Mol. Biol. 8: 415–424.

    Google Scholar 

  • Lerbs-Mache, S. 1993. The 110-kDa polypeptide of spinach plastid DNA-dependent RNA polymerase: single-subunit enzyme or catalytic core of multimeric enzyme complexes. Proc. Natl. Acad. Sci. USA 90: 5509–5513.

    PubMed  Google Scholar 

  • Leu, S., White, D. and Michaels, A. 1990. Cell cycle-dependent transcriptional and post-transcriptional regulation of chloroplast gene expression in Chlamydomonas reinhardtii. Biochim. Biophys. Acta 1049: 311–317.

    PubMed  Google Scholar 

  • Lui, B. and Troxler, R.F. 1996 Molecular characterization of a positively photoregulated nuclear gene for a chloroplast RNA polymerase σ factor in Cyanidium caldarium Proc. Natl. Acad. Sci. USA 93: 3313–3318.

    Google Scholar 

  • Mayfield, S.P., Yohn, C.B., Cohen, A. and Danon, A. 1995. Regulation of chloroplast gene expression. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46: 147–166.

    Google Scholar 

  • Mullet, J.E. 1993. Dynamic regulation of chloroplast transcription. Plant Physiol. 103: 309–313.

    PubMed  Google Scholar 

  • Nakahira, Y., Baba, K., Yoneda, A., Shiina, T. and Toyoshima, Y. 1998. Circadian-regulated transcription of the psbD lightresponsive promoter in wheat chloroplasts. Plant Physiol. 118: 1079–1088.

    PubMed  Google Scholar 

  • Pfannschmidt, T. and Link, G. 1994. Separation of two classes of plastid DNA-dependent RNA polymerases that are differentially expressed in mustard (Sinapis alba L.) seedlings. Plant Mol. Biol. 25: 69–81.

    PubMed  Google Scholar 

  • Sager, R. 1972. Cytoplasmic Genes and Organelles. Academic Press, New York.

    Google Scholar 

  • Salvador, M.L., Klein, U. and Bogorad, L. 1993. Light-regulated and endogenous fluctuations of chloroplast transcript levels in Chlamydomonas. Regulation by transcription and RNA degradation. Plant J. 3: 213–219.

    PubMed  Google Scholar 

  • Salvador, M.L., Klein, U. and Bogorad, L. 1998. Endogenous fluctuations of DNA topology in the chloroplast of Chlamydomonas reinhardtii. Mol. Cell Biol. 18: 7235–7242.

    PubMed  Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Schmidt, R.J., Richardson, C.B., Gillham, N.W. and Boynton, J.E. 1983. Sites of synthesis of chloroplast ribosomal proteins in Chlamydomonas. J. Cell Biol. 96: 1451–1463.

    PubMed  Google Scholar 

  • Schrubar, H., Wanner, G. and Westhoff, P. 1990. Transcriptional control of plastid gene expression in greening sorghum seedlings. Planta 183: 101–111.

    Google Scholar 

  • Sexton, T.B., Christopher, D.A. and Mullet, J.E. 1990. Lightinduced switch in barley psbD-psbC promoter utilization: a novel mechanism regulating chloroplast gene expression. EMBO J. 9: 4485–4494.

    PubMed  Google Scholar 

  • Stirdivant, S.M., Crossland, L.D. and Bogorad, L. 1985. DNA supercoiling affects in vitro transcription of two maize chloroplast genes differently. Proc. Natl. Acad. Sci. USA 82: 4886–4890.

    PubMed  Google Scholar 

  • Surzycki, S. 1969. Genetic functions of the chloroplast of Chlamydomonas reinhardi: effect of rifampin on chloroplast DNAdependent RNA polymerase. Proc. Natl. Acad. Sci. USA 63: 1327–1334.

    PubMed  Google Scholar 

  • Surzycki, S.J. and Shellenbarger, D.L. 1976. Purification and characterization of a putative sigma factor from Chlamydomonas reinhardi. Proc. Natl. Acad. Sci. USA 73: 3961–3965.

    PubMed  Google Scholar 

  • Takayanagi, Y., Tanaka, K. and Takahashi, H. 1994. Structure of the 50 upstream region and the regulation of the rpoS gene of Escherichia coli. Mol. Gen. Genet. 243: 525–531.

    Article  PubMed  Google Scholar 

  • Tanaka, K., Oikawa, K., Ohta, N., Kuroiwa, H., Kuriowa, T. and Takahashi, H. 1996. Nuclear encoding of a chloroplast RNA polymerase sigma subunit in a red alga. Science 272: 1932–1935.

    PubMed  Google Scholar 

  • Thompson, R.J. and Mosig, G. 1987. Stimulation of a chloroplast promoter by novobiocin in situ and in E. coli implies regulation by torsional stress in the chloroplast DNA. Cell 48: 281–287.

    PubMed  Google Scholar 

  • Thompson, R.J. and Mosig G. 1990. Light affects the structure of Chlamydomonas chloroplast chromosomes. Nucl. Acids Res. 18: 2625–2631.

    PubMed  Google Scholar 

  • Tiller, K. and Link, G. 1993. Phosphorylation and dephosphorylation affect functional characteristics of chloroplast and etioplast transcription systems from mustard (Sinapis alba L.). EMBO J. 12: 1745–1753.

    PubMed  Google Scholar 

  • Tozawa, Y., Tanaka, H. and Wakasa, K. 1998. Nuclear encoding of a plastid a factor in rice and its tissue-and light-dependent expression. Nucl. Acids Res. 26: 415–419.

    PubMed  Google Scholar 

  • Troxler, R.F., Zhang, Z.F., Hu, J. and Bogorad L. 1994. Evidence that σ factors are components of chloroplast RNA polymerase. Plant Physiol. 104: 753–759.

    PubMed  Google Scholar 

  • Tsinoremas, N.F., Ishiura, M., Kondo, T., Andersson, C.R., Tanaka, K., Takahashi, H., Johnson, C.H. and Golden S.S. 1996. A sigma factor that modifies the circadian expression of a subset of genes in cyanobacteria. EMBO J. 15: 2488–2495.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kawazoe, R., Hwang, S. & Herrin, D.L. Requirement for cytoplasmic protein synthesis during circadian peaks of transcription of chloroplast-encoded genes in Chlamydomonas. Plant Mol Biol 44, 699–709 (2000). https://doi.org/10.1023/A:1026519718992

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026519718992

Navigation