Skip to main content
Log in

Site parameters, species composition, phytomass structure and element stores of a terra-firme forest in East-Amazonia, Brazil

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

Our objective was to asses site parameters, species diversity, phytomass structure and element stores of a Terra-firme forest prior to subsequent studies on nutrient fluxes during forest conversion. The soil was classified as a Xanthic Ferralsol, with a low effective cation exchange capacity (ECEC), low nutrient status and a deeply weathered solum. On 0.75 ha, including all trees with a DBH >7 cm, we identified 222 tree species belonging to 58 families. The above-ground phytomass was estimated using logarithmic regression analysis on two plots of 0.25 ha each. Despite differences in forest structure and species composition, no major differences were found in terms of total phytomass or overall element stores. The mean living above-ground phytomass (LAGP) was 257 Mg ha−1, and mean quantity of litter 14 Mg ha−1, while dead wood contributed between 10 to 17% of total above-ground phytomass (32–56 Mg ha−1). Element store in LAGP was medium to high compared to other studies on tropical forest systems, while LAGP itself was comparatively low. Comparing 26 humid tropical forest stands recorded in literature, no correlation was found between LAGP and the amount of N and base cations stored in LAGP. However, a correlation between LAGP and P storage in LAGP (R 2=0.76) indicates the important role P may play in phytomass accumulation on zonal tropical soils. More then 60% of C, 20% of total N, 10% of total P and 66–88% of total K, Ca and Mg of the system (including the first meter of soil) were concentrated in the above-ground phytomass, including deadwood and litter. Consequently, phytomass destruction in form of forest conversion will lead to major element losses from the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ashton, P. S. 1974. Ecological studies in the Mixed Dipterocarp Forests in Brunei State. Oxford Forest Memoir 25.

  • Balée, W. 1987. A etnobotâ nica quantitativa dos índios Tembé (Rio Gurupi, Pará). Bol. Mus. Para. Emílio Goeldi, sér Bot. 3(1): 29–50.

    Google Scholar 

  • Balslev, H., Luteyn, J., Øllgaard, B. & Holm-Nielsen, L. B. 1987. Composition and structure of adjacent unflooded and floodplain forest in Amazonian Ecuador. Opera Bot. 92: 37–57.

    Google Scholar 

  • Baskerville, G. L. 1972. Use of logarithmic regression in the estimation of plant biomass. Can. J. Forest Res. 2: 49–53.

    Google Scholar 

  • Bernhard-Reversat, F., Huttel, C. & Lemée, G. 1978. Structure and functioning of evergreen rain forest ecosystems of the Ivory Coast. Pp. 556–574. Tropical Forest ecosystems. UNESCO, Paris.

    Google Scholar 

  • Black, G. A., Dobzhansky, T. & Pavan, C. 1950. Some attempts to estimate species diversity and population density of trees in Amazonian forests. Bot. Gaz. 111: 413–425.

    Google Scholar 

  • Boom, B. M. 1986. A forest inventory in Amazonian, Bolivia. Biotropica 18(4): 287–294.

    Google Scholar 

  • Brandes, B. 1991. Die Verhältnisse standörtlicher Nährstoffvorräte in Naturwald und Plantage in Abhängigkeit von Reliefposition und Tongehalt des Bodens, Ostkalimantan, Indonesien. Magisterarbeit am Forstwissenschaftlichen Fachbereich der Georg-August-Universität Göttingen.

  • Brown, I., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Ferreira, C. A. & Victoria, R. A. 1995. Uncertainty in the biomass of Amazonian forests: An example from Rondô nia, Brazil. Forest Ecol. Manag. 75: 175–189.

    Google Scholar 

  • Brown, S. & Lugo, A. E. 1990. Biomass estimates for Brazils Amazonian moist forest. Pp. 46–52. Forest 90: Annals of the first international symposium on environmental studies on tropical rain forests. Manaus.

  • Brown, S. & Lugo, A. E. 1992. Above-ground biomass estimates for tropical moist forests of the Brazilian Amazon. Interciencia 17(1): 8–18.

    Google Scholar 

  • Brown, S., Gillespie, A. J. R. & Lugo, A. E. 1989. Biomass estimation methods for tropical forests with application to forest inventory data. Forest Sci. 35(4): 881–902.

    Google Scholar 

  • Buurman, P., Van Lagen, B & Velthorst, E. J. 1996. Manual for soil and water analysis. Backhuys Publishers, Leiden, The Netherlands.

    Google Scholar 

  • Cain, S. A., Castro, G.M., Pires, J. M. & da Silva 1956. Application of some phytosociological techniques to brazilian rain forests. Part I: forest composition of Arapari island, Para. Am. J. Bot. 43: 911–941.

    Google Scholar 

  • Campbell, D. G., Daly, D. C., Prance, G. T. & Maciel, U. N. 1986. Quantitative ecological inventory of terra firme and várzea tropical forest on the rio Xingu, Brazilian Amazon. Brittonia 38(4): 369–393.

    Google Scholar 

  • Clark, D. B. 1996. Abolishing virginity. J. Tropical Ecol. 12(5): 735–739.

    Google Scholar 

  • Corlett, R. T. 1994. What is secondary forest? J. Tropical Ecol. 10: 445–447.

    Google Scholar 

  • Curtis, J. T. & Cottam, G. 1962. Plant ecology workbook. Burgess Publishing Co., Minneapolis, Minnesota.

    Google Scholar 

  • Dantas, M., Rodrigues, I. M. A. & Muller, N. R. M. 1980. Estudos fito-ecoló gicos do tropico ú mido brasileiro: aspectos fitosocioló gicos de mata sobre latosolo amarelo em Capitão Poç o, Pará. Bol. Pesq. EMBRAPA 9: 1–1.

    Google Scholar 

  • DENPASA (Dende do Para S/A) 1995. Climatologia -Ano 1968-1995.

  • Dezzeo, N. 1990. Bodeneigenschaften und Nährstoffvorratsentwicklung in autochthon degradierten Wäldern SO-Venezuelas. Göttinger Beiträge zur Land-und Forstwirtschaft in den Tropen und Subtropen Vol. 53.

  • Dezzeo, N. (Ed.) 1994. Ecologia de la altiplanicie de la Gran Sabana (Guayana Venezolana) I. Scientia Guaianae (Caracas) 4.

  • Edwards, P. J. & Grubb, P. J. 1982. Studies of mineral cycling in a montane rain forest in New Guinea. IV. Soil characteristics and the division of mineral elements between the vegetation and soil. J. Ecol. 70: 649–666.

    Google Scholar 

  • EMBRAPA, 1988. Boletim Agrometeoló gico. EMBRAPA-CPATU, Belém, Pará.

    Google Scholar 

  • Fearnside, P. M. 1985. Brazils Amazon forest and the global carbon problem. Interciencia 10(4): 179–186.

    Google Scholar 

  • Fearnside, P. M. 1992. Forest biomass in Brazilian Amazonia: comments on the estimate by Brown and Lugo. Interciencia 17(1): 19–27.

    Google Scholar 

  • Fearnside, P. M. & Guimarã res, W. M. 1996. Carbon uptake by secondary forests in Brazilian Amazonia. Forest Ecol. Manag. 80: 35–46.

    Google Scholar 

  • Finney, D. J. 1941. On the distribution of a variate whose logarithm is normally ditributed. J. Roy. Stat. Soc. Suppl. 7: 155–161.

    Google Scholar 

  • Fittkau, E. J. 1974. Zur ökologischen Gliederung Amazoniens I. Die erdgeschichtliche Entwicklung Amazoniens. Amazoniana 5: 77–134.

    Google Scholar 

  • Fölster, H., De Las Salas, G. & Khanna, P. 1976. A tropical evergreen forest site with perched water table, Magdalena valley, Columbia-Biomass and bioelement inventory of primary and secondary vegetation. Oecologia Plantarum 11(4): 297–320.

    Google Scholar 

  • Fölster, H. & Khanna, P. K. 1997. Dynamics of nutrient supply in plantation soils. Pp. 339–378. In: Nambiar, E. K. S & Brown, A. (eds), Management of soil, water and nutrients in tropical plantation forests. ACIAR (Australian Centre for International Agricultural Research), Canberra.

    Google Scholar 

  • Fujisaka, S., Bell, W., Thomas, N., Hurtado, L. & Crawford, E. 1996. Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agric. Ecosyst. Environ. 59: 115–130.

    Google Scholar 

  • Gentry, A. H. 1985. Some preliminary results of botanical studies in Manu Park. In: Tovar, A. & Rios, M. (eds), Estudios Bioló gicos en el Parque de Manu. Ministerio de Agricultura, Lima.

    Google Scholar 

  • Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Ann Miss. Bot. Gard. 75(1): 1–34.

    Google Scholar 

  • Golley, F. B. 1986. Chemical plant-soil relationships in tropical forests. J. Tropical Ecol. 2: 219–229.

    Google Scholar 

  • Golley, F. B., Mcginnis J. T., Clements R. G., Child G. I. & Duever M. J. 1975. Mineral cycling in a tropical moist forest ecosystem. University of Georgia Press Athens.

    Google Scholar 

  • Greenland, D. J. & Kowal J. M. L. 1960. Nutrient content of the moist tropical forest of Ghana. Plant Soil 12(2): 154–174.

    Google Scholar 

  • Heinrichs, H. 1989. Aufschlussverfahren in der analytischen Geochemie (Teil 1). Labor Praxis 12: 1140–1146.

    Google Scholar 

  • ISSS Working Group RB. 1998. World reference base for soil resources: Introduction In: Deckers, J. A., Nachtergaele, F. O. and Spaargaren, O. C. (Eds), First edition. International Society of Soil Science (ISSS), International Soil Reference and Information Centre (ISRIC) and Food and Agriculture Organization of the United Nations (FAO). Acco, Leuven.

    Google Scholar 

  • Jordan, C. F. 1982. The nutrient balance of an Amazonian rain forest. Ecology 63(3): 647–654.

    Google Scholar 

  • Klinge, H. 1976a. Nährstoffe, Wasser und Durchwurzelung von Podsolen und Latosolen unter tropischem Regenwald bei Manaus, Amazonien. Biogeographica 7: 45–58.

    Google Scholar 

  • Klinge, H. 1976b. Bilanzierung von Hauptnährstoffen im Ökosystem tropischer Regenwald, Manaus-vorläufige Daten. Biogeographica 7: 59–77.

    Google Scholar 

  • Klinge, R. 1998. Wasser-und Nährstoffdynamik im Boden und Bestand beim Aufbau einer Holzplantage im östlichen Amazonasgebiet. Göttinger Beiträge zur Land-und Forstwirtschaft in den Tropen und Subtropen, Vol. 122.

  • König, N. & Fortmann, H. 1996a. Probenvorbereitungs-, Untersuchungs-und Elementbestimmungsmethoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabors II des Forschungszentrums Waldökosysteme. Teil 1: Elementbestimmungsmethoden A-M. Berichte des Forschungszentrums Waldökosysteme, Vol. 46.

  • König, N. & Fortmann, H. 1996b. Probenvorbereitungs-, Untersuchungs-und Elementbestimmungsmethoden des Umweltanalytik-Labors der Niedersächsischen Forstlichen Versuchsanstalt und des Zentrallabors II des Forschungszentrums Waldökosysteme. Teil 2: Elementbestimmungsmethoden N-Z. Berichte des Forschungszentrums Waldökosysteme, Vol. 47.

  • Koutika, L. S., Bartoli, F., Andreux, F., Cerri, C. C., Burtin, G., Choné, T. & Philippy, R. 1997. Organic matter dynamics and aggregation in soils under rain forest and pastures of increasing age in eastern Amazon Basin. Geoderma 76: 87–112.

    Google Scholar 

  • Mackensen, J., Hölscher, D., Klinge, R., Fölster, H., 1996. Nutrient transfer to the atmosphere by burning of debris in eastern Amazonia. Forest Ecol. Manag. 86: 121–128.

    Google Scholar 

  • Meyer, H. A. 1941. A correction for a systematic error occuring in the application to the logarithmic equation. J. Series of the Penns. Agricultural Exp. Station, Paper No. 1058.

  • Moraes, J. L.; Cerri, C. C.; Melillo, J. M.; Kicklighter, D.; Neill, C.; Skole, D. L. & Steudler, P. A. 1995. Soil carbon stocks of the Brazilian Amazon Basin. Soil Sci. Soc. Am. J. 59: 244–247.

    Google Scholar 

  • Mori, S. A., Boom, B.M., Carvalinho, A. M. de & Santos, T. S. dos. 1983. Ecologial importance of myrtaceae in an eastern Brazilian wet forest. Biotropica 15(1): 68–70.

    Google Scholar 

  • Mori, S. A., Rabelo, B. V., Tsou, C. H. & Daly, D. C. 1989. Composition and structure of an eastern Amazonian forest at Camaipi, Amapá, Brazil. Bol. Mus. Para. Emílio Goeldi, sér Bot. 5(1): 3–18.

    Google Scholar 

  • Odum, H. T. 1970. Summary, an emerging view of the ecological system at El Verde. In: Odum, H. T. & Pigeon, R. F. (eds), A Tropical Rain Forest; Office of Information Services. 3. U.S.Atomic Energy Commission, Oak Ridge Book 3(I-10): I-191–I-289.

  • Overman, J. P. M., Witte, H. J. L. & Saldarriaga, J. G. 1994. Evaluation of regression models for above-ground biomass determination in Amazon rainforest. J. Tropical Ecol. 10: 207–218.

    Google Scholar 

  • PHCA 1984. Atlas Climatoló gico da Amazô nia Brasileira. Ministero do Interior, Superintendê ncia do Desenvolvimento da Amazô nia-Sudam. Pró jeto de hidrologia e climatologia da Amazô nia-PHCA. Belém, Pará, Brasil. Publ. No. 39.

  • Pires, J. M. 1966. The estuaries of the Amazon and Oyapoque Rivers. Pp. 211–218. Proc. of the Decca Symposium UNESCO.

  • Pires, J. M., Dobzhansky, T. & Black, G. A. 1953. An estimate of number of species of trees in an Amazonian forest community. Bot. Gaz. 114(4): 467–477.

    Google Scholar 

  • Poels, R. L. H. 1987. Soils, water and nutrients in a forest ecosystem in Suriname. PhD Thesis, Wageningen Agricultural University.

  • Prance; G. T., Rodrigues, W. A., Silva, M. F. 1976. Inventario florestal de um hectare de mata de terra firme km 30 da Estrada Manaus-Itacoatiara. Acta Amazonica 6(1): 9–35.

    Google Scholar 

  • Prenzel, J. 1990. WAKO-A program for the calculation of complexation equilibria in aqueous solutions. Introduction and example. Berichte Forschungszentrum Waldökosysteme Göttingen, Serie B, Vol. 16.

  • Richards, P. W. 1996. The tropical rainforest -an ecological study, second edition. Cambridge University Press, Cambrdige.

    Google Scholar 

  • Ruhiyat, D. (1989). Die Entwicklung der standörtlichen Nährstoffvorräte bei naturnaher Waldbewirtschaftung und im Plantagenbetrieb, Ostkalimantan (Indonesien). Göttinger Beiträge zur Land-und Forstwirtschaft in den Tropen und Subtropen, Vol. 35.

  • Sachs, L. 1992. Angewandte Statistik, 7th edition, Springer-Verlag, Berlin.

    Google Scholar 

  • Sanchez, P. A. 1976. Properties and Management of Soils in the Tropics. Wiley Interscience, Wiley and Sons, New York.

    Google Scholar 

  • Salomão, R. P. de & Lisboa, P. L. B. 1988. Análise ecoló gica da vegetaç ão de uma floresta pluvial tropical de terra firme. Rondô nia. Bol. Mus. Para. Emílio Goeldi, sér Bot. 4(2): 195–243.

    Google Scholar 

  • Salomão, R. P. de. 1991. Uso de parcelas permanentes para estudos da vegetaç ão da floresta tropical ú mida. I. Município deMarabá, Pará. Bol. Mus. Para. Emílio Goeldi, sér Bot. 7(2): 543–604.

    Google Scholar 

  • Salomão, R. P. de, Silva, M. F. F. da & Rosa, N. A. 1988. Inventário ecoló gico em floresta pluvial tropical de terra firme, Serra Norte, Carajás, Pará. Bol. Mus. Para. Emílio Goeldi, sér Bot. 4(1): 1–46.

    Google Scholar 

  • Silva, M. F. F. da, Rosa, N. A. & Salomão, R. P. de. 1986. Estudos Botâ nicos na área do Projeto Ferro Carajás. 3. Aspectos florísticos da mata do aeroporto de Serra Norte-PA. Bol. Mus. Para. Emílio Goeldi, sér Bot. 2(2): 169–187.

    Google Scholar 

  • Silva, A. S. L. D., Lisboa, P. L. B. & Maciel, N. 1992. Diversidade floristica em floresta densa da bacia do rio Juruá-AM. Bol Mus Para Emilio Goeldi, sér Bot. 8(2): 203–225.

    Google Scholar 

  • Sim, B. L. & Nykvist, N. 1991. Impact of forest harvesting and replanting. J. Tropical Forest Sci. 3(3): 251–284.

    Google Scholar 

  • Sombroek, W. G. 1966. Amazon Soils-A reconnaissance of the soils of the Brazilian Amazon region. Center for Agricultural Publications and Documentation, Wageningen, The Netherlands.

    Google Scholar 

  • Steinhardt, U. 1979. Untersuchungen über den Wasser-und Nährstoffhaushalt eines andinen Wolkenwaldes in Venezuela. Göttinger Bodenkundliche Berichte Vol. 56.

  • Tanner, E.V.J. 1985. Jamaican montane forests: nutrient capital and cost of growth. J. Ecol. 73: 553–568.

    Google Scholar 

  • Uhl, C. & Jordan, C. F. 1984. Succession and nutrient dynamics following forest cutting and burning in Amazonia. Ecology 65(5): 1476–1490.

    Google Scholar 

  • USDA, 1994. Keys to soil taxonomy. 6th edition. Pocahontas Press, USA.

    Google Scholar 

  • Vieira, L. S. & Dos Santos, P. C. T. 1987. Amazô nia -seus solos e outros recursos naturais. Editora Agronô mica Ceres, São Paulo.

  • Vieira, I. C. G. 1996. Forest succession after shifting cultivation in eastern Amazonia. Ph.D. thesis, University of Stirling, Scotland.

    Google Scholar 

  • Vitousek, P. M. Litterfall, nutrient cycling and nutrient limitation in tropical forests. Ecology 65(1): 285–298.

  • Vitousek, P. M. & Sanford, R. L. 1986. Nutrient cycling in moist tropical forest. Annu. Rev. Ecol. Syst. 17: 137–167.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackensen, J., Tillery-Stevens, M., Klinge, R. et al. Site parameters, species composition, phytomass structure and element stores of a terra-firme forest in East-Amazonia, Brazil. Plant Ecology 151, 101–119 (2000). https://doi.org/10.1023/A:1026515116944

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026515116944

Navigation