Skip to main content

Advertisement

Log in

Prospects for nutritional interventions in the clinical management of Fanconi anemia

  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

The evidence associating Fanconi anemia (FA) phenotype to in-vitro and ex-vivo oxidative stress is reviewed. A cancer-prone genetic disease, FA is characterized by delayed bone marrow failure with a progression to aplastic anemia. It is diagnosed by excess chromosomal instability induced by two clastogens, either diepoxybutane (DEB) or mitomycin C (MMC). Clinical symptoms vary in a broad range including a life-threatening hematological impairment, and an extended set of developmental abnormalities, growth retardation and skin pigmentation. Cancer-proneness in FA results in excess incidence of non-lymphoblastic leukemias, and of some defined solid tumors. The relationships of oxidative stress with FA phenotype rely on a consistent body of evidence that includes: (1) excess formation of DNA oxidative damage (both in vitro and in vivo); (2) cellular protection by hypoxia, low molecular-weight antioxidants, antioxidant enzymes, and thioredoxin overexpression; (3) impaired expression and/or activity of antioxidant enzymes, and (4) the redox-dependent action mechanisms of MMC and DEB. This evidence points to a re-appraisal of FA phenotype, suggesting a causative role for oxidative stress in disease progression towards malignancies and/or bone marrow depletion. A well-established literature reporting epidemiological and experimental data provides the nutritional bases for cancer control. Thus, the present state-of-the-art in the related fields of oxidative stress, nutrition, cancer-proneness and FA phenotype, altogether implies the need to undertake the most appropriate efforts to counteract oxidative stress in the clinical management of FA patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pagano G, Korkina LG, Brunk UT, et al. (1998) Congenital disorders sharing oxidative stress and cancer proneness as phenotypic hallmarks: Prospects for joint research in pharmacology. Med Hyp 51: 253–266.

    Google Scholar 

  2. Crawford D, Zbinden I, Monet R, Cerutti P (1988) Antioxidant enzymes in xeroderma pigmentosum fibroblasts. Cancer Res 48: 2132–2134.

    PubMed  Google Scholar 

  3. Driggers WJ, Grishko VI, LeDoux SP, Wilson GL (1996) Defective repair of oxidative damage in the mitochondrial DNA of a xeroderma pigmentosum group A cell line. Cancer Res 56: 1262–1266.

    PubMed  Google Scholar 

  4. Nicotera TM, Notaro J, Notaro S, Schumer J, Sandberg AA (1989) Elevated superoxide dismutase in Bloom's syndrome: a genetic condition of oxidative stress. Cancer Res 49: 5239–5243.

    PubMed  Google Scholar 

  5. Shiloh Y, Tabor E, Becker Y (1983) Abnormal response to ataxia telangiectasia cells to agents that break the deoxyribose moiety of DNA via a targeted free radical mechanism. Carcinogenesis 4: 1317–1322.

    PubMed  Google Scholar 

  6. Vuillaume M, Daya-Grosjean L, Vicens P, et al. (1992) Striking di.erences in cellular catalase activity between two DNA repair-deficient diseases: xeroderma pigmentosum and trichothiodystrophy. Carcinogenesis 13: 321–328.

    PubMed  Google Scholar 

  7. Ward AJ, Olive PL, Burr AH, Rosin MP (1994) Response of fibroblast cultures from ataxia-telangiectasia patients to reactive oxygen species generated during inflammatory reactions. Environ Mol Mutagen 24: 103–111.

    PubMed  Google Scholar 

  8. Alter BP (1996) Fanconi's anemia and malignancies. Am J Hematol 53: 99–110.

    PubMed  Google Scholar 

  9. Auerbach AD, Wolman, SR (1976) Susceptibility of Fanconi's anaemia fibroblasts to chromosome damage by carcinogens. Nature 261: 494–496.

    PubMed  Google Scholar 

  10. Clarke AA, Marsh JC, Gordon-Smith EC, Rutherford TR (1998) Molecular genetics and Fanconi anaemia: new insights into old problems. Br J Haematol 103: 287–296.

    PubMed  Google Scholar 

  11. Nordenson I (1977) Effect of superoxide dismutase and catalase on spontaneously occurring chromosome breaks in patients with Fanconi's anemia. Hereditas 86: 147–150.

    PubMed  Google Scholar 

  12. Lackinger D, Ruppitsch W, Ramirez MH, Hirsch-Kauffmann M, Schweiger M (1998) Involvement of the Fanconi anemia protein FA-C in repair processes of oxidative DNA damages. FEBS Lett 440: 103–106.

    PubMed  Google Scholar 

  13. Lo Ten Fo JR, Rooismans MA, Bosnoyan-Collins L, et al. (1996) Expression cloning of a cDNA for the major Fanconi anaemia gene, FAA. Nature Genet 14: 320–323.

    PubMed  Google Scholar 

  14. Strathdee CA, Gavish H, Shannon WR, Buchwald M (1992) Cloning of cDNAs for Fanconi's anaemia by functional comple-mentation. Nature 356: 763–767.

    PubMed  Google Scholar 

  15. de Winter JP, Waisfisz Q, Rooimans MA, et al. (1998) The Fanconi anemia group G gene is identical with human XRCC9. Nature Genet 20: 281–283.

    PubMed  Google Scholar 

  16. de Winter JP, Rooimans MA, van der Weel L, et al. (2000) The Fanconi anaemia gene FANCF encodes a novel protein with homology to ROM. Nature Genet 24: 15–16.

    PubMed  Google Scholar 

  17. Clarke AA, Philpott NJ, Gordon-Smith EC, Rutherford TR (1997) The sensitivity of Fanconi anaemia group C cells to apoptosis induced by mitomycin C is due to oxygen radical generation, not DNA crosslinking. Br J Haematol 96: 240–247.

    PubMed  Google Scholar 

  18. Dallapiccola B, Porfirio B, Mokini V, Alimena G, Isacchi G, Gandini E (1985) Effect of oxidants and antioxidants on chrom-osomal breakage in Fanconi's anemia lymphocytes. Hum Genet 69: 62–605.

    PubMed  Google Scholar 

  19. Degan P, Bonassi S, De Caterina M, et al. (1995) In vivo accumulation of 8–hydroxy-2′-deoxyguanosine in DNA correlates with release of reactive oxygen species in Fanconi's anaemia families. Carcinogenesis 16: 735–742.

    PubMed  Google Scholar 

  20. Emerit I, Levy A, Pagano G, Pinto L, Calzone R, Zatterale A (1995) Transferable clastogenic activity in plasma from patients with FA. Hum Genet 96: 14–20.

    PubMed  Google Scholar 

  21. Floyd RA (1990) The role of 8–hydroguanine in carcinogenesis. Carcinogenesis 9: 1447–1450.

    Google Scholar 

  22. Hoehn K, Kubbies M, Poot M, Rabinovitch PS (1986) BrdU-Hoechst flow cytometry links the cell kinetic defect of Fanconi's anemia to oxygen hypersensitivity. In: Schroeder-Kurt TM, Auerbach AD, Obe G, eds. Fanconi Anemia: Clinical, Cytogenetic and Experimental Aspects. Berlin: Springer-Verlag, pp. 161–173.

    Google Scholar 

  23. Joenje H, Arwert F, Eriksson AW, de Koning H, Oostra AB (1981) Oxygen-dependence of chromosomal aberrations in Fanconi's anaemia. Nature 290: 142–143.

    PubMed  Google Scholar 

  24. Joenje H, Nieuwint AWM, Oostra AB, Arwert F, de Koning H, Roozendaal KJ (1987) Cytogenetic toxicity of paraquat and streptonigrin in Fanconi's anemia. Cancer Genet Cytogenet 25: 37–45.

    PubMed  Google Scholar 

  25. Korkina LG, Samochatova EV, Maschan AA, Suslova TB, Cheremisina ZP, Afanas'ev IB (1992) Release of active oxygen radicals by leukocytes of Fanconi's anemia patients. J Leukocyte Biol 52: 357–362.

    PubMed  Google Scholar 

  26. Kruyt FA, Hoshino T, Liu JM, Joseph P, Jaiswal AK, Youssoufian H (1998) Abnormal microsomal detoxification implicated in Fanconi anemia group C by interaction of the FAC protein with NADPH cytochrome P450 reductase. Blood 92: 3050–3056.

    PubMed  Google Scholar 

  27. Nagasawa H, Little JB (1983) Suppression of cytotoxic effect of mitomycin-C by superoxide dismutase in Fanconi's anemia and dyskeratosis congenita fibroblasts. Carcinogenesis 4: 795–798.

    PubMed  Google Scholar 

  28. Pagano G, Korkina LG, Degan P, et al. (1997) In vitro hypersensitivity to oxygen of Fanconi anemia (FA) cells is linked to ex vivo evidence for oxidative stress in FA homozygotes and heterozygotes. Blood 89: 1111–1112.

    PubMed  Google Scholar 

  29. Pagano G (2000) Mitomycin C and diepoxybutane action mechanisms and FANCC protein functions: further insights into the role for oxidative stress in Fanconi's anaemia phenotype. Carcinogenesis 21: 1067–1068.

    PubMed  Google Scholar 

  30. Ruppitsch W, Meisslitzer C, Hirsch-Kauffmann M, Schweiger M (1998) Overexpression of thioredoxin in Fanconi anemia fibroblasts prevents the cytotoxic and DNA damaging e.ect of mitomycin C and diepoxybutane. FEBS Lett 422: 99–102.

    PubMed  Google Scholar 

  31. Schulz JC, Shahidi NT (1993) Tumor necrosis factor-a overproduction in Fanconi's anemia. Am J Hematol 42: 196–201.

    PubMed  Google Scholar 

  32. Takeuchi T, Morimoto K (1993) Increased formation of 8–hydroxydeoxyguanosine, an oxidative DNA damage, in lymphoblasts from Fanconi's anemia patients due to possible catalase deficiency. Carcinogenesis 14: 1115–1120.

    PubMed  Google Scholar 

  33. Ames BN (1989) Endogenous oxidative DNA damage, aging, and cancer. Free Rad Res Commun 7: 121–128.

    Google Scholar 

  34. Anonymous (1996) Diet, nutrition, and cancer prevention. Research opportunities, approaches, and pitfalls. Adv Exp Med Biol 401: 231–238.

    Google Scholar 

  35. Byers T (1996) Nutrition and cancer among American Indians and Alaska Natives. Cancer 78 (Suppl. 7): 1612–1616.

    PubMed  Google Scholar 

  36. Cheng KK, Day NE (1996) Nutrition and esophageal cancer. Cancer Causes Control 7: 33–40.

    PubMed  Google Scholar 

  37. Clinton SK, Giovannucci E (1998) Diet, nutrition, and prostate cancer. Annu Rev Nutr 18: 413–440.

    PubMed  Google Scholar 

  38. Dreosti IE (1998) Nutrition, cancer, and aging. Ann NY Acad Sci 854: 371–377.

    PubMed  Google Scholar 

  39. Gey KF (1995) Cardiovascular disease and vitamins. Concurrent correction of 'suboptimal’ plasma antioxidant levels may, as important part of ‘optimal’ nutrition, help to prevent early stages of cardiovascular disease and cancer, respectively. Bibl Nutr Diet 52: 75–91.

    Google Scholar 

  40. Halliwell B (1996) Oxidative stress, nutrition and health. Experimental strategies for optimization of nutritional antioxidant intake in humans. Free Radic Res 25: 57–74.

    PubMed  Google Scholar 

  41. Hill HA, Austin H (1996) Nutrition and endometrial cancer. Cancer Causes Control 7: 19–32.

    PubMed  Google Scholar 

  42. Hill MJ (1997) Nutrition and human cancer. Ann NY Acad Sci 833: 68–78.

    PubMed  Google Scholar 

  43. Howe GR, Burch JD (1996) Nutrition and pancreatic cancer. Cancer Causes Control 7: 69–82.

    PubMed  Google Scholar 

  44. Hunter DJ, Willett WC (1996) Nutrition and breast cancer. Cancer Causes Control 7: 56–68.

    PubMed  Google Scholar 

  45. Kolonel LN (1996) Nutrition and prostate cancer. Cancer Causes Control 7: 83–84.

    PubMed  Google Scholar 

  46. Kono S, Hirohata T (1996) Nutrition and stomach cancer. Cancer Causes Control 7: 41–55.

    PubMed  Google Scholar 

  47. La Vecchia C, Negri E (1996) Nutrition and bladder cancer. Cancer Causes Control 7: 95–100.

    PubMed  Google Scholar 

  48. Marshall JR, Boyle P (1996) Nutrition and oral cancer. Cancer Causes Control 7: 101–111.

    PubMed  Google Scholar 

  49. Patterson RE, White E, Kristal AR, Neuhouser ML, Potter JD (1999) Vitamin supplements and cancer risk: the epidemiologic evidence. Cancer Causes Control 8: 786–802.

    Google Scholar 

  50. Potischman N, Brinton LA (1996) Nutrition and cervical neoplasia. Cancer Causes Control 7: 113–126.

    PubMed  Google Scholar 

  51. Potter JD (1996) Nutrition and colorectal cancer. Cancer Causes Control 7: 127–146.

    PubMed  Google Scholar 

  52. Riboli E, Kaaks R, Esteve J (1996) Nutrition and laryngeal cancer. Cancer Causes Control 7: 147–156.

    PubMed  Google Scholar 

  53. Riboli E, Kaaks R (1997) The EPIC Project: rationale and study design. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26 (Suppl. 1): S6–14.

    Google Scholar 

  54. Schantz SP, Zhang ZF, Spitz MS, Sun M, Hsu TC (1997) Genetic susceptibility to head and neck cancer: interaction between nutrition and mutagen sensitivity. Laryngoscope 107: 765–781.

    PubMed  Google Scholar 

  55. Scheppach W, Bingham S, Boutron-Ruault MC, et al. (1999) WHO consensus statement on the role of nutrition in colorectal cancer. Eur J Cancer Prev 8: 57–62.

    PubMed  Google Scholar 

  56. SENECA (1996) Nutrition and the elderly in Europe. Follow-up study and longitudinal analysis. Eur J Clin Nutr 50 (Suppl. 2): S1–127.

    Google Scholar 

  57. Stolzenberg-Solomon RZ, Albanes D, Nieto FJ, et al. (1999) Pancreatic cancer risk and nutrition-related methyl-group avail-ability indicators in male smokers. J Natl Cancer Inst 91: 535–541.

    PubMed  Google Scholar 

  58. Tominaga S, Kuroishi T (1997) An ecological study on diet/ nutrition and cancer in Japan. Int J Cancer Suppl. 10: 2–6.

    Google Scholar 

  59. Wolk A, Lindblad P, Adami HO (1996) Nutrition and renal cell cancer. Cancer Causes Control 7: 5–18.

    PubMed  Google Scholar 

  60. Yong LC, Brown CC, Schatzkin A, et al. (1997) Intake of vitamins E, C, and A and risk of lung cancer. The NHANES I epidemiologic followup study. First National Health and Nutri-tion Examination Survey. Am J Epidemiol 146: 231–243.

    PubMed  Google Scholar 

  61. Ziegler RG, Mayne ST, Swanson CA (1996) Nutrition and lung cancer. Cancer Causes Control 7: 157–177.

    PubMed  Google Scholar 

  62. Hang B, Yeung AT, Lambert MW (1993) A damage-recognition protein which binds to DNA containing interstrand cross-links is absent or defective in Fanconi anemia, complementation group A, cells. Nucleic Acids Res 21: 4187–4192.

    PubMed  Google Scholar 

  63. Lambert MW, Tsongalis GJ, Lambert WC, Parrish DD (1997) Correction of DNA repair defect in Fanconi anemia complementation groups A and D cells. Biochem Biophys Res Commun 230: 587–591.

    PubMed  Google Scholar 

  64. Fujiwara Y, Tatsumi M (1975) Repair of mitomycin C damage to DNA in mammalian cells and its impairment in Fanconi's anemia cells. Biochem Biophys Res Commun 66: 592–598.

    PubMed  Google Scholar 

  65. Belcourt MF, Hodnick WF, Rockwell S, Sartorelli AC (1996) Differential toxicity of mitomycin C and porfiromycin to aerobic and hypoxic Chinese hamster ovary cells overexpressing human NADPH:cytochrome c (P-450) reductase. Proc Natl Acad Sci USA 93: 456–460.

    PubMed  Google Scholar 

  66. Bligh HFJ, Bartoszek A, Robson CN, et al. (1990) Activation of mitomycin C by NADPH-cytochrome P-450 reductase. Cancer Res 50: 7789–7792.

    PubMed  Google Scholar 

  67. Dusre L, Rajagopalan S, Eliot HM, Covey JM, Sinha BK (1990) DNA interstrand cross-link and free radical formation in a human multidrug resistant cell line from mitomycin C and its analogues. Cancer Res 50: 648–652.

    PubMed  Google Scholar 

  68. Gutteridge JMC, Quinlan GJ, Wilkins S (1984) Mitomycin C-induced deoxyribose degradation inhibited by superoxide dismutase. A reaction involving iron, hydroxyl and semiquinone radicals. FEBS Lett 167: 37–41.

    PubMed  Google Scholar 

  69. Joseph P, Xu Y, Jaiswal AK (1996) Non-enzymatic and enzymatic activation of mitomycin C: identification of a unique cytosolic activity. Int J Cancer 65: 263–271.

    PubMed  Google Scholar 

  70. Pinkus R, Weiner LM, Daniel V (1995) Role of quinone-mediated generation of hydroxyl radicals in the induction of glutathione S-transferase gene expression. Biochemistry 34: 81–88.

    PubMed  Google Scholar 

  71. Pritsos CA, Sartorelli AC (1986) Generation of reactive oxygen radicals through bioactivation of mitomycin antibiotics. Cancer Res 46: 3528–3532.

    PubMed  Google Scholar 

  72. Korkina LG, Deeva IB, De Biase A, et al. (2000) Redox-dependent toxicity of diepoxybutane and mitomycin C in sea urchin embryogenesis. Carcinogenesis 21: 213–220.

    PubMed  Google Scholar 

  73. Bartók M, Láng KL (1990) Oxiranes. In: Patai S, ed. The Chemistry of Functional Groups. Supplement E, Part 2. The Chemistry of Ethers, Crown Ethers, Hydroxyl Groups and their Sulphur Analogues. Chichester: John Wiley, pp. 609–673.

    Google Scholar 

  74. Spanó M, Cordelli E, Leter G, Pacchierotti F (1998) Diepoxybutane cytotoxicity on mouse germ cells is enhanced by in vivo glutathione depletion: a flow cytometric approach. Mutat Res 397: 37–43.

    PubMed  Google Scholar 

  75. Vlachodimitropoulos D, Norppa H, Autio K, et al. (1997) GSTT1–dependent induction of centromere-negative and-positive micronuclei by 1,2:3,4–diepoxybutane in cultured human lymphocytes. Mutagenesis 12: 397–403.

    PubMed  Google Scholar 

  76. Joenje H, Youssoufian H, Kruyt FAE, dos Santos C, Wevrick R, Buchwald M (1995) Expression of the Fanconi anemia gene FAC in human cell lines: Lack of e.ect of oxygen tension. Blood Cells Mol Dis 21: 182–191.

    PubMed  Google Scholar 

  77. Saito H, Hammond AT, Moses RE (1993) Hypersensitivity to oxygen is a uniform and secondary defect in Fanconi anemia cells. Mutat Res 294: 255–262.

    PubMed  Google Scholar 

  78. Saito H, Hammond AT, Moses RE (1995) The eect of low oxygen tension on the in vitro replicative life span of human diploid fibroblast cells and their transformed derivatives. Exp Cell Res 217: 272–279.

    PubMed  Google Scholar 

  79. Emerit I (1994) Reactive oxygen species, chromosome mutation and cancer: possible role of clastogenic factors in carcinogenesis. Free Rad Biol Med 16: 99–109.

    PubMed  Google Scholar 

  80. Emerit I, Cerutti P (1981) Clastogenic activity from Bloom's syndrome fibroblast cultures. Proc Natl Acad Sci USA 78: 1868–1872.

    PubMed  Google Scholar 

  81. Feng L, Xia Y, Garcia GE, Hwang D, Wilson CB (1995) Involvement of reactive oxygen intermediates in cyclooxygenase-2 expression induced by interleukin-1, tumor necrosis factor-a, and lipopolysaccharide. J Clin Invest 95: 1669–1675.

    PubMed  Google Scholar 

  82. Weitzman SA, Gordon LI (1990) Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood 76: 655–664.

    PubMed  Google Scholar 

  83. Weitzman SA, Weitberg AB, Clark EP, Stossel TP (1985) Phagocytes as carcinogens: malignant transformation produced by human neutrophils. Science 227: 1231–1233.

    PubMed  Google Scholar 

  84. Frenkel K (1989) Oxidation of DNA bases by tumor promoter-activated processes. Environ Health Perspect 81: 45–54.

    PubMed  Google Scholar 

  85. Monboisse J-C, Borel J-P (1992) Oxidative damage to collagen. In: Emerit I, Chance B, eds. Free Radicals and Aging. Basel: Birkhäuser, pp. 323–327.

    Google Scholar 

  86. Gaetani GF, Galiano S, Canepa L, Ferraris AM, Kirkman HN (1989) Catalase and glutathione peroxidase are equally active in detoxification of hydrogen peroxide in human erythrocytes. Blood 73: 334–339.

    PubMed  Google Scholar 

  87. Korkina LG, Deeva IB, Trakhtman PE, et al. (2000) Evidence for impaired response to oxidative stress in Fanconi's anemia lymphoblastoid cells. (Submitted).

  88. Mian IS, Moser MJ (1998) The Fanconi anemia complementation group A protein contains a peroxidase domain. Mol Genet Metab 63: 230–234.

    PubMed  Google Scholar 

  89. Shahidi NT, Diamond LK (1959) Testosterone-induced remission in aplastic anemia. Am J Dis Child 98: 293–300.

    PubMed  Google Scholar 

  90. Young NS, Alter BP (1994) Aplastic Anemia Acquired and Inherited. Philadelphia: WB Saunders.

    Google Scholar 

  91. Agarno M, Tamagno E, Gatto V, et al. (1999) Dehydroepiandrosterone protects tissues of streptozotocin-treated rats against oxidative stress. Free Rad Biol Med 26: 1467–1474.

    PubMed  Google Scholar 

  92. Khalil A, Lahoux JG, Wagner RJ, et al. (1998) Dehydroepiandrosterone protects low density lipoproteins against peroxidation by free radicals produced by gamma-radiolysis of ethanol-water mixtures. Atherosclerosis 136: 99–107.

    PubMed  Google Scholar 

  93. Tamagno E, Aragno M, Bocuzzi G, et al. (1998) Oxygen free radical scavenger properties of dehydroepiandrosterone. Cell Biochem Funct 16: 57–63.

    PubMed  Google Scholar 

  94. Kodama M, Inoue F, Saito H, Oda T, Sato Y (1997) Formation of free radicals from steroid hormones: possible significance in environmental carcinogenesis. Anticancer Res 17: 439–444.

    PubMed  Google Scholar 

  95. Troll W (1991) Prevention of cancer by agents that suppress oxygen radical formation. Free Rad Res Commun 12–13: 751–757.

    Google Scholar 

  96. Ripple MO, Henry WF, Rago RP, Wilding G (1997) Prooxidant-antioxidant shift induced by androgen treatment of human prostate carcinoma cells. J Natl Cancer Inst 89: 40–48.

    PubMed  Google Scholar 

  97. Good RA, Lorenz E, Engelman R, Day NK (1990) Experimental approaches to nutrition and cancer: fats, calories, vitamins and minerals. Med Oncol Tumor Pharmacother 7: 183–192.

    PubMed  Google Scholar 

  98. Sorensen G, Stoddard A, Ockene JK, Hunt MK, Youngstrom R (1996) Worker participation in an integrated health promotion/ health protection program: results from the WellWorks project. Health Educ Q 23: 191–203.

    PubMed  Google Scholar 

  99. Sanders BG, Kline K (1995) Nutrition, immunology and cancer: an overview. Adv Exp Med Biol 369: 185–194.

    PubMed  Google Scholar 

  100. Clemens MR, Waladkhani AR, Bublitz K, Ehninger G, Gey KF (1997) Supplementation with antioxidants prior to bone marrow transplantation. Wien Klin Wochenschr 109: 771–776.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pagano, G., Korkina, L.G. Prospects for nutritional interventions in the clinical management of Fanconi anemia. Cancer Causes Control 11, 881–889 (2000). https://doi.org/10.1023/A:1026503020755

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026503020755

Navigation