Journal of Applied Phycology

, Volume 12, Issue 6, pp 557–566 | Cite as

Change in light quality due to a blue-green pigment, marennine, released in oyster-ponds: effect on growth and photosynthesis in two diatoms, Haslea ostrearia and Skeletonema costatum

  • Gérard Tremblin
  • Rozenn Cannuel
  • Jean-Luc Mouget
  • Malko Rech
  • Jean-Michel Robert


Two prominent diatoms encountered in oyster-ponds,Haslea ostrearia and Skeletonema costatum,were grown in batch and in a semi-continuous modeunder light of different spectral quality, white, blueor blue-green. The last corresponded to white lightmodified by a water-soluble pigment, marennine,produced by H. ostrearia. After acclimation tothe different light treatments, the growth rates ofboth species showed little variation with respect tolight quality. The parameters for photosynthesisvs irradiance curves were very similar in H. ostrearia grown under the three light conditions,whereas S. costatum the maximum photosyntheticcapacity (on a chlorophyll a basis) wassignificantly reduced under blue-green light. Fluorescence analyses confirmed the data forphotosynthesis, with the operational fluorescenceyield decreasing faster with increasing irradiance inS. costatum grown under blue-green light. InH. ostrearia, fluorescence yields undersaturating irradiance were closely similar in thethree light conditions. The results are discussed inrelation with the prominent development of H.ostrearia that can outcompete other diatoms inoyster-ponds.

blue light chlorophyll a fluorescence photo-acclimation microalgae diatoms competition marennine 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baghdadli D, Tremblin G, Ducher M (1994) The effects of light quality on growth, photosynthesis and development in cultivated thalli of Cystoseira barbata C. Ag. F. aurantia (Klütz.) Giaccone (Phaeophyceae, Fucales). Bot. mar. 37: 43-50.Google Scholar
  2. Büchel C, Wilhelm C (1993) In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. Photochem. Photobiol. 58: 137-148.Google Scholar
  3. Dring MJ (1984) Blue light effects in marine macroalgae. In Senger H (ed.), Blue Light Effects in Biological Systems, Springer Verlag, Berlin Heidelberg, pp. 509-516.Google Scholar
  4. Faust MA, Sager JC, Meeson BW (1982) Response of Prorocentrum mariae-lebouriae (Dinophyceae) to light of different spectral qualities and irradiances: growth and pigmentation. J. Phycol. 18: 349-356.Google Scholar
  5. Forster RM, Dring MJ (1994) Effects of blue light on the photosynthetic capacity of marine plants from different taxonomic, ecological and morphological groups. Eur. J. Phycol. 29: 21-27.Google Scholar
  6. Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990: 87-92.Google Scholar
  7. Gilstad M, Johnsen G, Sakshaud E (1993) Photosynthetic parameters, pigment composition and respiration rates of the marine diatom Skeletonema costatum grown grown in continuous light and a 12:12 h light-dark cycle. J. Plankt. Res. 15: 939-951.Google Scholar
  8. Holdsworth ES (1985) Effect of growth factors and light quality on the growth, pigmentation and photosynthesis of two diatoms, Thallassiosira gravida and Phaeodactylum tricornutum. Mar. Biol. 86: 253-262.Google Scholar
  9. Jeffrey SW (1981) Blue-green light effects in marine microalgae: enhanced thylakoid and chlorophyll synthesis. In Akoyunoglou G (ed.), Photosynthesis and Productivity, photosynthesis and Environment, Balabian International Science Services, Philadelphia, pp. 435-442.Google Scholar
  10. Jeffrey SW (1984) Responses of unicellular marine plants to natural blue-green light environments. In Senger H (ed.), Blue Light Effects in Biological Systems, Springer Verlag, Berlin Heidelberg, pp. 497-508.Google Scholar
  11. Jerlov NG (1976) Seawater acts as a monochromator of blue light. In Jerlov NG (ed.), Marine Optics, Elsevier/Oceanogr. Ser. 14, Amsterdam p. 52.Google Scholar
  12. Latasa M (1995) Pigment composition of Heterocapsa sp. and Thalassiosira weissflogii growing in batch cultures under different irradiances. Sci. Mar. 59(1): 25-37.Google Scholar
  13. Mouget JL, De la Noüe J, Legendre L, Jean Y, Viarouge P (1992) Artificial lighting system design for photosynthetics studies. J. Chem. Tech. Biotechnol. 55: 171-176.Google Scholar
  14. Mouget JL, Tremblin G, Morant-Manceau A, Morançais M, Robert J-M (1999) Long-term photoacclimation of Haslea ostrearia (Bacillariophyta): effect of irradiance on growth rates, pigment content and photosynthesis. Eur. J. Phycol. 34: 109-115.Google Scholar
  15. Nassiri Y, Robert J-M, Rincé Y, Ginsburger-Vogel T (1998) The cytoplasmic fine structure of the diatom Haslea ostrearia (Bacillariophyceae) in relation to marennine production. Phycologia 37: 84-91.Google Scholar
  16. Neuville D, Daste P (1972) Production de pigment bleu par la diatomée Navicula ostrearia (Gaillon) Bory, maintenue en culture unialgale sur un milieu synthétique carencé en azote nitrique. C. R. Acad. Sci. Paris 274: 2030-2033.Google Scholar
  17. Neuville D, Daste P (1978) Recherches sur le déterminisme de la production de marennine par la diatomée marine Navicula ostrearia (Gaillon) Bory en culture in vitro. Rev. gén. Bot. 85: 255-303.Google Scholar
  18. Nielsen MV, Sakshaug E (1993) Photobiological studies ofSkeletonema costatum adapted to spectrally different regimes. Limnol. Oceanogr. 38: 1576-1581.Google Scholar
  19. Provasoli L (1968) Media and prospects for the cultivation of marine algae. In Watanabe A, Hattori A (eds), Cultures and Collection of Algae. Proc. USA-Japan Conference, Hakone, Japan. Soc. Plant Physiol, pp. 63-75.Google Scholar
  20. Rincé Y (1978) Intervention des Diatomées dans l'Écologie des Claires Ostréicoles de la Baie de Bourgneuf. Thèse Doct. Univ., Nantes: 203 pp.Google Scholar
  21. Rincé Y (1993) Les Diatomées Marines de la Région de Basse-Loire: Inventaire, Distribution Spatio-temporelle et Devenir Expérimental des Peuplements Naturels d'Écosystèmes Ostréicoles. Thèse Doct., Nantes: 497 pp.Google Scholar
  22. Robert J-M(1983) Fertilité des Claires Ostréicoles et Verdissement: Utilisation de l'Azote par les Diatomées Dominantes. Thèse Doct., Nantes: 281 pp.Google Scholar
  23. Robert J-M (1984) Greening of oyster-ponds by the diatom Haslea ostrearia Bory: a model of the phenomenon. In Ricard (ed.), Proc. 8th Symp. on Recent and Fossil Diatoms, Paris, 27 Aug-1 Sep 1984, Taxonomy, Morphology, Ecology, Biology, pp. 517-523.Google Scholar
  24. Sakhaug E, Bricaud A, Dandonneau Y, Falkowski PG, Kieffer DA, Legendre L, Morel A, Parlow J, Takahashi M (1997) Parameters of photosynthesis: definitions, theory and interpretation of results. J. Plankon Res. 19: 1637-1670.Google Scholar
  25. Sakshaug E, Demers S, Yentsch CM (1987) Thalassiosira oceanica and T. pseudonana: two different photoadaptational responses. Mar. Ecol. Progr. Ser. 41: 275-282.Google Scholar
  26. Sanchez-Saavedra MP, Voltolina D (1996) Effect of blue-green light on growth rate and chemical composition of three diatoms. J. appl. Phycol. 8: 131-137.Google Scholar
  27. Schreiber U, Bilger W, Neubauer C (1994) Chlorophyll fluorescence as a non-intrusive indicator for rapid assessment of in vivo photosynthesis. Ecol. Stud. 100: 49-70.Google Scholar
  28. Schubert H, Tremblin G, Robert J-M, Sagert S, Rincé Y (1995) In vivo fluorescence measurement of photosynthesis of Haslea ostrearia Simonsen in relation to marennine content. Diatom. Res. 10: 341-349.Google Scholar
  29. Senger H (1987) Blue Light Responses: Phenomena and Occurrence in Plants and Microorganisms. CRC Press Inc. Boca Raton, Vol 1, 160 pp. Vol. 2, 169 pp.Google Scholar
  30. Speziale BJ, Schreiner SP, Giammatteo PA, Schindler JE (1984). Comparison of N,N-dimethylformamide, dimethyl sulfoxide and acetone for extraction of phytoplankton chlorophyll. Can. J. Fish. aquat. Sci. 41: 1519-1522.Google Scholar
  31. Tremblin G, Robert J-M (1996) Comportement photosynthétique de Haslea ostrearia en relation avec sa pigmentation bleue. C. R. Acad. Sci. Paris 319: 939-944.Google Scholar
  32. Turpin V (1999) Evènements Physico-chimiques et Biologiques Présidant à la Prolifération d'Haslea Ostrearia (Simonsen) dans les Claires Ostréicoles de la Région de Marennes-Oléron: Implications dans la Maîtrise du Verdissement. Thèse Doct., Nantes: 208 pp.Google Scholar
  33. Voskresenskaya NP (1984) Control of the activity of photosynthetic apparatus in higher plants. In Senger H. (ed), Blue Light Effects in Biological Systems, Springer-Verlag, Berlin-Heidelberg, pp. 407-418.Google Scholar
  34. Wallen DG, Geen GH (1971) Light quality in relation to growth, photosynthetic rates and carbon metabolim in two species of marine plankton algae. Mar. Biol. 10: 34-43.Google Scholar

Copyright information

© Kluwer Academic Publishers 2000

Authors and Affiliations

  • Gérard Tremblin
    • 1
  • Rozenn Cannuel
    • 1
    • 2
  • Jean-Luc Mouget
    • 3
  • Malko Rech
    • 1
  • Jean-Michel Robert
    • 1
    • 2
  1. 1.Laboratoire de Physiologie et Biochimie Végétales, Faculté des SciencesUniversité du MaineLe Mans Cedex 9France
  2. 2.Laboratoire de Biologie Marine, ISOMERUniversité de NantesNantes CEDEX 3France
  3. 3.Laboratoire de Physiologie et Biochimie Végétales, Faculté des SciencesUniversité du MaineLe Mans Cedex 9France

Personalised recommendations