Skip to main content

Equation of State for Nonpolar Fluids: Prediction from Boiling Point Constants


A new corresponding states correlation for the second virial coefficient of nonpolar fluids in terms of the boiling point constants is presented. The scaling constants are the normal boiling point temperature, T bp, which is used to form a dimensionless temperature and the liquid density at the normal boiling point, ρ bp, which is used to form a dimensionless second virial coefficient. The procedure has been examined for a large number of substances including noble gases, diatomic molecules, saturated hydrocarbons up to C8, and a number of aliphatic, aromatic, and cyclic hydrocarbons. The resulting correlation has been applied to predict the equation of state of fluids over the range from the vapor-pressure curve to the freezing curve at various temperatures from the triple point up to the nonanalytical critical region. The equation of state has been applied to reproduce the liquid density of a great number of compounds both in the saturation and compressed states, at temperatures up to 2000 K and pressures up to 10000 bar, within an accuracy of a few percent. In particular we have shown that knowledge of two readily measurable constants is sufficient to determine the pvT surface of pure normal fluids having a variety of structural complexities.

This is a preview of subscription content, access via your institution.


  1. 1.

    A. Barker and D. Henderson, J. Chem. Phys. 47:4714 (1967).

    Google Scholar 

  2. 2.

    J. D. Weeks, D. Chandler, and H. C. Andersen, J. Chem. Phys. 54:5237 (1971).

    Google Scholar 

  3. 3.

    G. Ihm, Y. Song, and E. A. Mason, J. Chem. Phys. 94:3839 (1991).

    Google Scholar 

  4. 4.

    Y. Song and E. A. Mason, J. Chem. Phys. 93:686 (1990).

    Google Scholar 

  5. 5.

    Y. Song and E. A. Mason, J. Chem. Phys. 91:7840 (1989).

    Google Scholar 

  6. 6.

    Y. Song and E. A. Mason, Fluid Phase Equil. 75:105 (1992).

    Google Scholar 

  7. 7.

    K. S. Pitzer, J. Chem. Phys. 7:583 (1939).

    Google Scholar 

  8. 8.

    D. Berthelot, Trav. et. Mèm. Bur. Int. Poid et Mes. 13 (1907).

  9. 9.

    K. S. Pitzer and R. F. Curl, Jr., J. Am. Chem. Soc. 79:2369 (1957).

    Google Scholar 

  10. 10.

    K. S. Pitzer, D. Z. Lippmann, R. F. Curl, Jr., C. M. Huggins, and D. E. Petersen, J. Am. Chem. Soc. 77:3433 (1955).

    Google Scholar 

  11. 11.

    R. C. Reid, J. M. Prausnitz, and B. E. Polling, The Properties of Gases and Liquids, 4th ed. (McGraw–Hill, New York, 1987).

    Google Scholar 

  12. 12.

    A. Boushehri and E. A. Mason, Int. J. Thermophys. 14:685 (1993).

    Google Scholar 

  13. 13.

    M. H. Ghatee and A. Boushehri, Int. J. Thermophys. 17:945 (1996).

    Google Scholar 

  14. 14.

    J. H. Dymond and E. B. Smith, The Virial Coefficients of Pure Gases and Mixtures. A Critical Compilation (Oxford University, Oxford, 1980).

    Google Scholar 

  15. 15.

    M. Michels, J. M. Lupton, T. Wassenaar, and W. de Graaff, Physica 18:121 (1952).

    Google Scholar 

  16. 16.

    K. Strein, R. N. Lichtenthaler, B. Schramm, and K. Schafer, Ber. Bunsenges. Phys. Chem. 75:1308 (1971).

    Google Scholar 

  17. 17.

    N. Al-Bizreh and C. J. Wormald, J. Chem. Thermodyn. 10:231 (1978).

    Google Scholar 

  18. 18.

    E. E. Roper, J. Phys. Chem. 44:835 (1940).

    Google Scholar 

  19. 19.

    L. E. Kolysko, Z. S. Belousova, T. D. Sulimova, L. V. Mozhginskaya, and V. M. Prokhorov, Russ. J. Phys. Chem. 47:1067 (1973); Zh. Fiz. Khim. 47:1890 (1973).

    Google Scholar 

  20. 20.

    M. L. McGlashan and C. J. Wormald, Trans. Faraday Soc. 60:646 (1964).

    Google Scholar 

  21. 21.

    F. M. Tao and E. A. Mason, Int. J. Thermophys. 13:1053 (1992).

    Google Scholar 

  22. 22.

    N. B. Vargaftik, Handbook of Physical Properties of Liquids and Gases, 2nd ed., English translation (Hemisphere, New York, 1983).

  23. 23.

    R. B. Stewart and R. T. Jacobsen, J. Phys. Chem. Ref. Data 18:639 (1989).

    Google Scholar 

  24. 24.

    R. T. Jacobsen, R. B. Stewart, and M. Jahangiri, J. Phys. Chem. Ref. Data 15:735 (1986).

    Google Scholar 

  25. 25.

    R. B. Stewart, R. T. Jacobsen, and W. Wagner, J. Phys. Chem. Ref. Data 20:917 (1991).

    Google Scholar 

Download references

Author information



Rights and permissions

Reprints and Permissions

About this article

Cite this article

Eslami, H. Equation of State for Nonpolar Fluids: Prediction from Boiling Point Constants. International Journal of Thermophysics 21, 1123–1137 (2000).

Download citation

  • compressed liquids
  • corresponding states
  • equation of state
  • gases
  • second virial coefficient