Skip to main content
Log in

K+ Uptake by Fermenting Escherichia coli Cells: pH Dependent Mode of the TrkA System Operating

  • Published:
Bioscience Reports

Abstract

Escherichia coli accumulates K+ by means of multiple transportsystems, of which TrkA is the most prominent at neutral and alkalinepH while Kup is major at acidic pH. In the present study, K+ uptakewas observed with cells grown under fermentative conditions at an initialpH of 9.0 and 7.3 (the medium pH decreased to 8.4 and 6.8, respectively,during the mid-logarithmic growth phase), washed with distilled water andresuspended in a K+ containing medium at pH 7.5 in the presence ofglucose. The kinetics for this K+ uptake and the amount of K+accumulated by the wild type and mutants having a functional TrkA orKup could confirm that K+ uptake by E. coli grown either at pH 9.0or pH 7.3 occurs mainly through TrkA. The following results distinguishpH dependent mode of TrkA operating: (1) K+ uptake was inhibited byDCCD in cells grown either at pH 9.0 or pH 7.3, although the stoichiometryof K+ influx to DCCD-inhibited H+ efflux for bacteria grownat pH 9.0 varied with external K+ concentration, but remained constantfor cells grown at pH 7.3; (2) K+ uptake was observed with an atpDmutant grown at pH 9.0 but not at pH 7.3; (3) The DCCD-inhibited H+efflux was increased 8-fold less by 5 mM K+ added into a K+ freemedium for bacteria grown at pH 9.0 than that for cells grown at pH 7.3;(4) the DCCD-inhibited ATPase activity of membrane vesicles from bacteriagrown at pH 9.0 was reduced a little in the presence of 100 mM K+,but stimulated more than 2.4-fold at pH 7.3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  • Adler, L. W. and Rosen, B. P. (1977) J. Bacteriol. 129:959–966.

    Google Scholar 

  • Al-Shawi, M. K., Ketchum, C. J., and Nakamoto, R. K. (1997) J. Biol. Chem. 272:2300–2306.

    Google Scholar 

  • Avetisyan, A. V., Dibrov, P. A., Semeykina, L. A., Skulachev, V. P., and Sokolov, M. V. (1991) Biochim. Biophys. Acta 1098:95–104.

    Google Scholar 

  • Bagramyan, K. A. and Martirosov, S. M. (1989) FEBS Lett. 246:149–152.

    Google Scholar 

  • Bakker, E. P., Booth, I. R., Dinnbier, U., Epstein, W., and Gajewska, A. (1987) J. Bacteriol. 169:9743–9749.

    Google Scholar 

  • Bakker, E. P. and Mangerich, W. E. (1983) Biochim. Biophys. Acta 730:379–386.

    Google Scholar 

  • Brey, R. N., Rosen, B. P., and Sorensen, E. N. (1980) J. Biol. Chem. 255:39–44.

    Google Scholar 

  • Dosch, D. C., Helmer, G. L., Sutton, S. H., Salvacion, F. F., and Epstein, W. (1991) J. Bacteriol. 173:687–695.

    Google Scholar 

  • Etzold, C., Deckers-Heberstreit, G., and Altendorf, K. (1997) Eur. J. Biochem. 243:336–343.

    Google Scholar 

  • Fillingame, R. H., Oldenburg, M., and Fraga, D. (1991). J. Biol. Chem. 266:20934–20939.

    Google Scholar 

  • Fischer, S., Etzold, C., Turina, P., Deckers-Heberstreit, G., Altendorf, K., and Graber, P. (1994) Eur. J. Biochem. 225:167–172.

    Google Scholar 

  • Josse, J. (1966) J. Biol. Chem. 241:1938–1942.

    Google Scholar 

  • Kanazawa, H., Horiuchi, Y., Takagi, M., Ishino, Y., and Futai, M. (1980) J. Biochem. 88:695–703.

    Google Scholar 

  • Konings, W. N. and Kaback, H. R. (1973) Proc. Natl. Acad. Sci. USA 70:3376–3379.

    Google Scholar 

  • Konings, W. N., Poolman, B., and van Veen, H. W. (1994) Antonie van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 65:369–380.

    Google Scholar 

  • Koyama, N., Wakabayashi, K., and Nosoh, Y. (1987) Biochim. Biophys. Acta 898:293–298.

    Google Scholar 

  • La Roe, D. J. and Vik, S. B. (1992) J. Bacteriol. 174:633–637.

    Google Scholar 

  • Loo, T. W. and Bragg, P. D. (1982) Biochem. Biophys. Res. Commun. 106:400–406.

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem. 193:265–272.

    Google Scholar 

  • Martirosov, S. M., Ogandjanian, E. S., and Trchounian, A. A. (1988) Bioelectrochem. Bioenerg. 19:353–357.

    Google Scholar 

  • Martirosov, S. M. and Trchounian, A. A. (1983) Bioelectrochem. Bioenerg. 11:29–36.

    Google Scholar 

  • Martirosov, S. M. and Trchounian, A. A. (1986) Bioelectrochem. Bioenerg. 15:417–426.

    Google Scholar 

  • McLaggan, D., Naprstek, J., Buurman, E. T., and Epstein, W. (1994) J. Biol. Chem. 269:1911–1917.

    Google Scholar 

  • Nelson, N., Chibovsky, R., and Gutnick, D. L. (1979) Meth. Enzymol. 55:338–361.

    Google Scholar 

  • Rhoads, D. B. and Epstein, W. (1977a) J. Biol. Chem. 252:1394–1401.

    Google Scholar 

  • Rhoads, D. B. and Epstein, W. (1977b) Biochim. Biophys. Actas 469:45–51.

    Google Scholar 

  • Rhoads, D. B., Waters, F. B., and Epstein, W. (1976) J. Gen. Physiol. 67:325–341.

    Google Scholar 

  • Rossmann, R., Sawers, G., and Bock, A. (1991) Mol. Microbiol. 5:2807–2814.

    Google Scholar 

  • Sasahara, K. C., Heinzinger, N. K., and Barrett, E. L. (1997) J. Bacteriol. 179:6736–6740.

    Google Scholar 

  • Schemidt, R. A., Brauning, C. K., Boulier, A., and Brusilow, W. S. (1996) J. Biol. Chem. 271:33390–33393.

    Google Scholar 

  • Schemidt, R. A., Qu, J., Williams, J. R., and Brusilow, W. S. (1998) J. Bacteriol. 180:3205–3208.

    Google Scholar 

  • Schlosser, A., Hamann, A., Bossemeyer, D., Schneider, E., and Bakker, E. P. (1993) Mol. Microbiol. 9:533–543.

    Google Scholar 

  • Stewart, L. M., Bakker, E. P., and Booth, I. R. (1985) J. Gen. Microbiol. 131:77–91.

    Google Scholar 

  • Trchounian, A. A. (1997) Anaerobe 3:355–371.

    Google Scholar 

  • Trchounian, A. A., Bagramyan, K., and Poladian, A. (1997) Curr. Microbiol. 35:201–206.

    Google Scholar 

  • Trchounian, A. A. and Kobayashi, H. (1999) FEBS Lett. 447:144–148.

    Google Scholar 

  • Trchounian, A. A., Ohanjanyan, Y., and Zakharyan, E. (1998a) Membr. Cell. Biol. 12:67–68.

    Google Scholar 

  • Trchounian, A. A. et al. (1998b) Biosci. Rep. 18:143–154.

    Google Scholar 

  • Trchounian, A. A., Ogandjanian, E. S., and Bagramyan, K. A. (1996) Membr. Cell. Biol. 9:515–528.

    Google Scholar 

  • Trchounian, A. A., Ogandjanian, E. S., and Mironova, G. D. (1992) Bioelectrochem. Bioenerg. 27:367–372.

    Google Scholar 

  • Trchounian, A. A., Ogandjanian, E. S., and Vanian, P. A. (1994) Curr. Microbiol. 29:187–191.

    Google Scholar 

  • Trchounian, A. A. and Vassilian, A. V. (1994) J. Bioenerg. Biomembr. 26:563–571.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trchounian, A., Kobayashi, H. K+ Uptake by Fermenting Escherichia coli Cells: pH Dependent Mode of the TrkA System Operating. Biosci Rep 20, 277–288 (2000). https://doi.org/10.1023/A:1026493024066

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026493024066

Navigation