Skip to main content
Log in

A Developmental Atlas of Rat Mammary Gland Histology

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The mammary gland is a dynamic tissue that undergoes epithelial expansion and invasion during puberty and cycles of branching and lobular morphogenesis, secretory differentiation, and regression during pregnancy, lactation, and involution. The alteration in the mammary gland epithelium during its postnatal differentiation is accompanied by changes in the multiple stromal cell types present in this complex tissue. The postnatal plasticity of the epithelium, endothelium, and stromal cells of the mammary gland may contribute to its susceptibility to carcinogenesis. The purpose of this review is to assist researchers in recognizing histological changes in the epithelium and stroma of the rat mammary gland throughout development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCE

  1. J. Kaye, M. H. Ross, L. J. Romrell, and G. I. Kaye (1995). Female reproductive system. In M. H. Ross, L. J. Romrell, and K. Kaye (eds.), Histology: A Text and Atlas, Williams & Wilkins, Maryland, pp. 678–738.

    Google Scholar 

  2. I. H. Russo and J. Russo (1978). Developmental stage of the rat mammary gland as determinant of its susceptibility to 7,12-dimethylbenz(a)anthracene. J. Natl. Cancer Inst. 61: 1439–1449.

    Google Scholar 

  3. I. H. Russo and J. Russo (1996). Mammary gland neoplasia in long-term rodent studies. Environ. Health Perspect. 104:938–967.

    Google Scholar 

  4. F. F. Bolander, Jr. (1990). Differential characteristics of the thoracic and abdominal mammary glands from mice. Exp. Cell Res. 189:142–144.

    Google Scholar 

  5. M. J. Van Zwieten (1984). Normal anatomy and pathology of the rat mammary gland. In The Rat as Animal Model in Breast Cancer Research, Martinus Nijhoff, Boston, pp. 53–134.

    Google Scholar 

  6. R. C. Hovey, T. B. McFadden, and R. M. Akers (1999). Regulation of mammary gland growth and morphogenesis by the mammary fat pad: A species comparison. J. Mammary Gland Biol. Neoplasia 4:53–68.

    Google Scholar 

  7. K. R. Jeffers (1935). Cytology of the mammary gland of the albino rat I. Pregnancy, lactation and involution. Am. J. Anat. 56:257–278.

    Google Scholar 

  8. D. R. Pitelka (1980). General morphology and histology of the adult gland. In The Mammary Gland, Plenum Press, New York, pp. 944–965.

    Google Scholar 

  9. S. Nandi, R. C. Guzman, and J. Yang (1995). Hormones and mammary carcinogenesis in mice, rats, and humans: A unifying hypothesis. Proc. Natl. Acad. Sci.USA 92:3650–3657.

    Google Scholar 

  10. W. Bocker, B. Bier, G. Freytag, B. Brommelkamp, E. D. Jarasch, G. Edel, B. Dockhorn-Dworniczak, and K. W. Schmid (1992). An immunohistochemical study of the breast using antibodies to basal and luminal keratins, alpha-smooth muscle actin, vimentin, collagen IV and laminin. Part I: Normal breast and benign proliferative lesions. Virchow's Arch. A 421:315–322.

    Google Scholar 

  11. S. R. Dundas, M. G. Ormerod, B. A. Gusterson, and M. J. O'Hare (1991). Characterization of luminal and basal cells flow-sorted from the adult rat mammary parenchyma. J. Cell Sci. 100:459–471.

    Google Scholar 

  12. K. C. Richardson (1949). Contractile tissues in the mammary gland, with special reference to myoepithelium in the goat. Proc. R. Soc. Lond. 136:30–45.

    Google Scholar 

  13. R. Dulbecco, M. Unger, B. Armstrong, M. Bowman, and P. Syka (1983). Epithelial cell types and their evolution in the rat mammary gland determined by immunological markers. Proc. Natl. Acad. Sci. USA 80:1033–1037.

    Google Scholar 

  14. R. Dulbecco, W. R. Allen, M. Bologna, and M. Bowman (1986). Marker evolution during the development of the rat mammary gland: Stem cells identified by markers and the role of myoepithelial cells. Cancer Res. 46:2449–2456.

    Google Scholar 

  15. J. T. Emerman and A. W. Vogl (1986). Cell size and shape changes in the myoepithelium of the mammary gland during differentiation. Anat. Rec. 216:405–415.

    Google Scholar 

  16. J. E. Ferguson, A. M. Schor, A. Howell, and M. W. Ferguson (1992). Changes in the extracellular matrix of the normal human breast during the menstrual cycle. Cell Tiss. Res. 268:167–177.

    Google Scholar 

  17. J. R. Gordon and M. R. Bernfield (1980). The basal lamina of the postnatal mammary epithelium contains glycosaminoglycans in a precise ultrastructural organization. Dev. Biol. 74:118–135.

    Google Scholar 

  18. M. Glukhova, V. Koteliansky, X. Sastre, and J.-P. Thiery (1995). Adhesion systems in normal breast and in invasive breast carcinoma. Am. J. Pathol. 146:706–716.

    Google Scholar 

  19. G. K. Koukoulis, I. Virtanen, M. Korhonen, L. Laitinen, V. Quaranta, and V. E. Gould (1991). Immunohistochemical localization of integrins in the normal, hyperplastic and neoplastic breast. Correlations with their functions as receptors and cell adhesion molecules. Am. J. Clin. Pathol. 139:787–799.

    Google Scholar 

  20. M. N. Gould, W. F. Biel, and K. H. Clifton (1977). Morphological and quantitative studies of gland formation from inocula of monodispersed rat mammary cells. Exp. Cell Res. 107: 405–416.

    Google Scholar 

  21. K. H. Hollmann (1974). Cytology and fine structure of the mammary gland. In B. L. Larson (ed.), Lactation: A Comprehensive Treatise, Academic Press, New York, pp. 3–95.

    Google Scholar 

  22. N. D. Kim and K. H. Clifton (1993). Characterization of rat mammary epithelial cell subpopulations by peanut lectin and anti-THY-1.1 antibody and study of flow-sorted cells in vivo. Exp. Cell Res. 207:74–85.

    Google Scholar 

  23. I. H. Russo and J. Russo (1978). Developmental stage of the rat mammary gland as a determinant of its susceptibility to 7,12-dimethylbenz[a]anthracene. J. Natl. Cancer Inst. 61: 1439–1449.

    Google Scholar 

  24. D. M. Moore, A. W. Vogl, K. Baimbridge, and J. T. Emerman (1987). Effect of calcium on oxytocin-induced contraction of mammary gland myoepithelium as visualized by NBDphalloidin. J. Cell Sci. 88:563–569.

    Google Scholar 

  25. M. J. Warburton, D. Mitchell, E. J. Ormerod, and P. Rudland (1982). Distribution of myoepithelial cells and basement membrane proteins in the resting, pregnant, lactating, and involuting rat mammary gland. J. Histochem. Cytochem. 30:667–676.

    Google Scholar 

  26. D. G. Fernig, J. A. Smith, and P. S. Rudland (1991). Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland. In M. Lippman and R. Dickson (eds.), Regulatory Mechanisms in Breast Cancer, Kluwer, Boston, pp. 47–78.

    Google Scholar 

  27. C. M. Hughes and P. S. Rudland (1990). Appearance of myoepithelial cells in developing rat mammary glands identi-fied with the lectins Griffonia simplicifolia-1 and pokeweed mitogen. J. Histochem. Cytochem. 38:1647–1657.

    Google Scholar 

  28. C. W. Turner (1932). The mammary glands. In E. Allen (ed.), Sex and Internal Secretions, Williams & Wilkins, Baltimore, pp. 544–583.

    Google Scholar 

  29. J. Russo, K. L. Tay, and I. H. Russo (1982). Differentiation of the mammary gland and susceptibility to carcinogenesis. Breast Cancer Treat. Rep. 2:5–73.

    Google Scholar 

  30. N. M. Brown and C. A. Lamartiniere (1995). Xenoestrogens alter mammary gland differentiation and cell proliferation in the rat. Environ. Health Perspect. 103:708–713.

    Google Scholar 

  31. J. Russo and I. H. Russo (1978). DNA labeling index and structure of the rat mammary gland as determinants of its susceptibility to carcinogenesis. J. Natl. Cancer Inst. 61:1451–1457.

    Google Scholar 

  32. E. J. Ormerod and P. S. Rudland (1984). Cellular composition and organization of ductal buds in developing rat mammary glands: Evidence for morphological intermediates between epithelial and myoepithelial cells. Am. J. Anat. 170:631–652.

    Google Scholar 

  33. D. G. Fernig, J. A. Smith, and P. S. Rudland (1991). Relationship of growth factors and differentiation in normal and neoplastic development of the mammary gland. Cancer Treat. Res. 53:47–78.

    Google Scholar 

  34. J. M. Williams and C. W. Daniel (1983). Mammary ductal elongation: Differentiation of myoepithelium and basal lamina during branching morphogenesis. Dev. Biol. 97:274–290.

    Google Scholar 

  35. K. Ota, A. Yokoyama, and Y. Shinde (1962). Effects of administration of oxytocin and prolactin on nucleic acids and phosphoprotein contents of mammary glands in lactating rats. Nature 195:77–78.

    Google Scholar 

  36. R. C. Humphreys, M. Krajewska, S. Krnacik, R. Jaeger, H. Weiher, S. Krajewski, J. C. Reed, and J. M. Rosen (1996). Apoptosis in the terminal endbud of the murine mammary gland: A mechanism of ductal morphogenesis. Development 122:4013–4022.

    Google Scholar 

  37. G. B. Silberstein and C. W. Daniel (1982). Elvax 40P implants: Sustained, local release of bioactive molecules influencing mammary ductal development. Dev. Biol. 93:272–278.

    Google Scholar 

  38. G. B. Silberstein, P. Strickland, S. Coleman, and C. W. Daniel (1990). Epithelium-dependent extracellular matrix synthesis in transforming growth factor-beta1-growth-inhibited mouse mammary gland. J. Cell Biol. 110:2209–2219.

    Google Scholar 

  39. W. Imagawa, J. Yang, R. Guzman, and S. Nandi (1994). Control of mammary gland development. In E. Knobil and J. D. Neill (eds.), The Physiology of Reproduction, Raven Press, New York, pp. 1033–1063.

    Google Scholar 

  40. G. Chepko and G. H. Smith (1999). Mammary epithelial stem cells: Our current understanding. J. Mammary Gland Biol. Neoplasia 4:35–52.

    Google Scholar 

  41. R. Dulbecco, M. Henahan, and B. Armstrong (1982). Cell types and morphogenesis in the mammary gland. Proc. Natl. Acad. Sci. USA 79:7346–7350.

    Google Scholar 

  42. K. Joshi, J. A. Smith, N. Perusinghe, and P. Monoghan (1986). Cell proliferation in the human mammary epithelium:Differential contribution by epithelial and myoepithelial cells. Am. J. Pathol. 124:199–206.

    Google Scholar 

  43. W. Imagawa, G. K. Bandyopadhyay, and S. Nandi (1990). Regulation of mammary epithelial cell growth in mice and rats. Endocrine Rev. 90:494–523.

    Google Scholar 

  44. J. Russo, B. A. Gusterson, A. E. Rogers, I. H. Russo, S. R. Wellings, and M. J. Van Zwieten (1990). Comparative study of human and rat mammary tumorigenesis. Lab. Invest. 62:244–278.

    Google Scholar 

  45. C. H. Knight and M. Peaker (1982). Development of the mammary gland. Reprod. Fertil. 65:521–536.

    Google Scholar 

  46. C. W. Daniel, G. B. Silberstein, K. Van Hom, P. Strickland, and S. Robinson (1989). TGF-β1-induced inhibition of mouse mammary ductal growth: Developmental specificity and characterization. Dev. Biol. 135:20–30.

    Google Scholar 

  47. G. B. Silberstein, K. C. Flanders, A. B. Roberts, and C. W. Daniel (1992). Regulation of mammary morphogenesis: Evidence for extracellular matrix-mediated inhibition of ductal budding by transforming growth factor-beta1. Dev. Biol. 152:354–362.

    Google Scholar 

  48. S. Klaus (1996). Functional differentiation of white and brown adipocytes. BioEssays 19:215–223.

    Google Scholar 

  49. J. J. Elias, D. R. Pitelka, and R. C. Armstrong (1973). Changes in fat cell morphology during lactation in the mouse. Anat. Rec. 177:533–547.

    Google Scholar 

  50. M. Matsumoto, H. Nishinakagawa, M. Kurohmaru, Y. Hayashi, and M. A. Awal (1995). Ultrastructural changes in fat cells and blood capillaries of the mammary gland in starved mice. J. Veterin. Med. Sci. 57:733–736.

    Google Scholar 

  51. M. C. Neville, D. Medina, J. Monks, and R. C. Hovey (1998). The mammary fat pad. J. Mammary Gland Biol. Neoplasia 3:109–116.

    Google Scholar 

  52. M. Matsumoto, H. Nishinakagawa, M. Kurohmaru, Y. Hayashi, and J. Otsuka (1992). Effects of estrogen and progesterone on the development of the mammary gland and the associated blood vessels in ovariectomized mice. J. Veterin. Med. Sci. 54:1117–1124.

    Google Scholar 

  53. M. H. Ross, L. J. Romrell, and G. I. Kaye (1995). Cardiovascular system. In M. H. Ross, L. J. Romrell, and G. I. Kaye (eds.), Histology:AText and Atlas,Williams &Wilkins, Baltimore, pp. 302–328.

    Google Scholar 

  54. Y. N. Sinha and H. A. Tucker (1966). Mammary gland growth of rats between 10 and 100 days of age. Am. J. Physiol. 210:601–605.

    Google Scholar 

  55. A. T. Cowin (1949). The relative growth of the mammary gland in normal, gonadectomized and adrenalectomized rats. J. Endocrinol. 6:145–147.

    Google Scholar 

  56. F. Bresciani (1968). Topography of DNA synthesis in the mammary gland of the C3H mouse and its control by ovarian hormones: An autoradiographic study. Cell Tiss. Kinet. 1:51–63.

    Google Scholar 

  57. P. A. Masso-Welch, G. Verstovsek, K. Darcy, C. Tagliarino, and M. M. Ip (1998). Protein kinase C eta upregulation and secretion during postnatal rat mammary gland differentiation. Eur. J. Cell Biol. 77:48–59.

    Google Scholar 

  58. P. A. Masso-Welch, G. Verstovsek, and M. M. Ip (1999). Alterations in the expression and localization of protein kinase C isoforms during mammary gland differentiation. Eur. J. Cell Biol. 78:497–510.

    Google Scholar 

  59. D. R. Griffith and C. W. Turner (1961). Normal growth of rat mammary glands during pregnancy and early lactation. Proc. Soc. Exp. Biol. Med. 106:448–450.

    Google Scholar 

  60. K. Joshi, J. T. B. Ellis, C. M. Hughes, P. Monaghan, and A. M. Neville (1986). Cellular proliferation in the rat mammary gland during pregnancy and lactation. Lab. Invest. 54:52–61.

    Google Scholar 

  61. R. E. Munford (1963). Changes in the mammary glands of rats and mice during pregnancy, lactation and involution 3. Relation of structural and biochemical changes. J. Endocrinol. 28:35–44.

    Google Scholar 

  62. R. E. Munford (1963). Changes in the mammary glands of rats and mice during pregnancy, lactation, and involution 1. Histological structure. J. Endocrinol. 28:1–15.

    Google Scholar 

  63. R. E. Munford (1964). A review of anatomical and biochemical changes in the mammary gland with particular reference to quantitative methods of assessing mammary development. Dairy Sci. Abstr. 26:293–304.

    Google Scholar 

  64. J. M. Rosen, S. L. C. Woo, and J. P. Comstock (1975). Regulation of casein messenger RNA during the development of the rat mammary gland. Biochemistry 14:2895–2903.

    Google Scholar 

  65. A. R. Howlett and M. J. Bissell (1993). The influence of tissue microenvironment (stroma and extracellular matrix) on the development and function of mammary epithelium. Epith. Cell Biol. 2:79–89.

    Google Scholar 

  66. L. M. A. Maeder (1922). Changes in the mammary gland of the albino rat (Mus norvegicus albinus) during lactation and involution. Am. J. Anat. 31:1–26.

    Google Scholar 

  67. I. A. Forsyth (1986). Variation among species in the endocrine control of mammary growth and function: The roles of prolactin, growth hormone, and placental lactogen. J. Dairy Sci. 69:886–903.

    Google Scholar 

  68. R. E. Munford (1963). Changes in the mammary glands of rats and mice during pregnancy, lactation and involution 2. Levels of deoxyribonucleic acid, and alkaline and acid phosphatases. J. Endocrinol. 28:17–34.

    Google Scholar 

  69. H. A. Tucker and R. P. Reese (1963). Nucleic acid content of mammary glands of lactating rats. Proc. Soc. Exp. Biol. 112:409–412.

    Google Scholar 

  70. H. H. Traurig (1967). Cell proliferation in the mammary gland during late pregnancy and lactation. Anat. Rec. 157:489–504.

    Google Scholar 

  71. L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1995). Apoptosis in lactating and involuting mouse mammary tissue demonstrated by nick-end DNA labelling. Cell Tiss. Res. 281:413–419.

    Google Scholar 

  72. L. R. Lund, J. Romer, N. Thomasset, H. Solberg, C. Pyke, M. J. Bissell, K. Dano, and Z. Werb (1996). Two distinct phases of apoptosis in mammary gland involution: Proteinase-independent and-dependent pathways. Development 122:181–193.

    Google Scholar 

  73. D. R. Griffith and C. W. Turner (1962). Hormonal control of mammary gland involution in the rat. Proc. Soc. Exp. Biol. Med. 110:485–487.

    Google Scholar 

  74. R. C. Richards and G. K. Benson (1971). Structural changes associated with inhibition of involution of the mammary gland in the albino rat. J. Endocrinol. 51:137–148.

    Google Scholar 

  75. E. A. Jones (1967). Changes in the enzyme pattern of the ammary gland of the lactating rat after hypophysectomy and weaning. Biochem. J. 103:420–427.

    Google Scholar 

  76. D. J. Flint, R. A. Clegg, and C. H. Knight (1984). Effects of prolactin, progesterone and ovariectomy on metabolic activities and insulin receptors in the mammary gland and adipose tissue during extended lactation in the rat. J. Endocrinol. 102:231–236.

    Google Scholar 

  77. R. C. Richards and G. K. Benson (1971). Ultrastructural changes accompanying involution of the mammary gland in the albino rat. J. Endocrinol. 51:127–135.

    Google Scholar 

  78. A. Marti, Z. W. Feng, H. J. Altermatt, and R. Jaggi (1997). Milk accumulation triggers apoptosis of mammary epithelial cells. Eur. J. Cell Biol. 73:158–165.

    Google Scholar 

  79. N. I. Walker, R. E. Bennett, and J. F. R. Kerr (1989). Cell death by apoptosis during involution of the lactating breast in mice and rats. Am. J. Anat. 185:19–32.

    Google Scholar 

  80. I. A. Silver (1956). Vascular changes in the mammary gland during engorgement with milk. J. Physiol. 133:65P–66P.

    Google Scholar 

  81. H. J. Helminen and J. L. E. Ericsson (1971). Effects of enforced milk stasis on mammary gland epithelium, with special reference to changes in lysosomes and lysosomal enzymes. Exp. Cell Res. 68:411–427.

    Google Scholar 

  82. A. Håkansson, B. Zhivotovsky, S. Orrenius, H. Sabharwal, and C. Svanborg (1995). Apoptosis induced by a human milk protein. Proc. Natl. Acad. Sci. USA 92:8064–8068.

    Google Scholar 

  83. M. Peaker (1980). The effect of raised intramammary presAtlas sure on mammary function in the goat in relation to the cessation of lactation. J. Physiol. 301:415–428.

    Google Scholar 

  84. C. J. Wilde, C. H. Knight, and D. J. Flint (1999). Control of milk secretion and apoptosis during mammary involution. J. Mammary Gland Biol. Neoplasia 4:129–136.

    Google Scholar 

  85. R. S. Talhouk, M. J. Bissell, and Z. Werb (1992). Coordinated expression of extracellular matrix-degrading proteinases and their inhibitors regulates mammary epithelial function during involution. J. Cell Biol. 118:1271–1282.

    Google Scholar 

  86. S. R. Dickson and M. J. Warburton (1992). Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland. J. Histochem. Cytochem. 40:697–703.

    Google Scholar 

  87. R. Strange, F. Li, S. Saurer, A. Burkhardt, and R. R. Friis (1992). Apoptotic cell death and tissue remodeling during mouse mammary gland involution. Development 115:49–58.

    Google Scholar 

  88. N. Boudreau, C. J. Sympson, Z. Werb, and M. J. Bissell (1995). Suppression of ICE and apoptosis in mammary epithelial cells by extracellular matrix. Science 267:891–893.

    Google Scholar 

  89. A. Martinez-Hernandez, L. M. Fink, and G. B. Pierce (1976). Removal of basement membrane in the involuting breast. Lab. Invest. 34:455–462.

    Google Scholar 

  90. M. Ambili, K. Jayasree, and P. R. Sudhakaran (1998). 60K gelatinase involved in mammary gland involution is regulated by beta-estradiol. Biochim. Biophys. Acta 1403:219–231.

    Google Scholar 

  91. A. Marti, B. Jehn, E. Costello, N. Keon, G. Ke, F. Martin, and R. Jaggi (1994). Protein kinaseAand AP-1 (c-Fos/JunD) are induced during apoptosis of mouse mammary epithelial cells. Oncogene 9:1213–1223.

    Google Scholar 

  92. C. H. Streuli and A. P. Gilmore (1999). Adhesion-mediated signaling in the regulation of mammary epithelial cell survival. J. Mammary Gland Biol. Neoplasia 4:183–191.

    Google Scholar 

  93. L. H. Quarrie, C. V. P. Addey, and C. J. Wilde (1996). Programmed cell death during mammary tissue involution induced by weaning, litter removal, and milk stasis. J. Cell. Physiol. 168:559–569.

    Google Scholar 

  94. S. Pullan, J. Wilson, A. Metcalfe, G. M. Edwards, N. Goberdhan, J. Tilly, J. A. Hickman, C. Dive, and C. H. Streuli (1996). Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell Sci. 109:631–642.

    Google Scholar 

  95. K. R. Jeffers (1935). Cytology of the mammary gland of the albino rat II. Experimentally induced conditions. Am. J. Anat. 56:279–303.

    Google Scholar 

  96. D. R. Pitelka, S. T. Hamamoto, J. G. Duafala, and M. K. Nemanic (1973). Cell contacts in the mouse mammary gland. J. Cell Biol. 56:797–818.

    Google Scholar 

  97. D. R. Griffith and C. W. Turner (1961). Normal and experimental involution of rat mammary gland. Proc. Soc. Exp. Biol. Med. 107:668–670.

    Google Scholar 

  98. H. A. Tucker and R. P. Reece (1963). Nucleic acid contents of rat mammary glands during post-lactational involution. Proc. Soc. Exp. Biol. Med. 112:370–372.

    Google Scholar 

  99. R. C. Richards and G. K. Benson (1971). Involvement of the macrophage system in the involution of the mammary gland in the albino rat. J. Endocrinol. 51:149–156.

    Google Scholar 

  100. C. J. Radnor (1972). Myoepithelial cell differentiation in rat mammary glands. J. Anat. 111:381–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masso-Welch, P.A., Darcy, K.M., Stangle-Castor, N.C. et al. A Developmental Atlas of Rat Mammary Gland Histology. J Mammary Gland Biol Neoplasia 5, 165–185 (2000). https://doi.org/10.1023/A:1026491221687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026491221687

Navigation