Skip to main content
Log in

Effective Interaction and Superfluidity in Two-dimensional Liquid 3He

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

Effective interaction of two-dimensional liquid 3He is studied with the (selfconsistent) reaction matrix theory. The theory is found to be valid in the dilute region, ρ2D ≲0.02 Å−2, where ρ2D is the areal density. In the region, the attractive interaction in the p-wave channel is the most dominant, and the system is expected to undergo a transition to a p-wave superfluid state, except for the dilue limit. The transition temperature is estimated to be of the order of mK in the clean limit. In the dilute limit, ρ2D ≲0.002 Å−2, an s-wave superfluid state becomes more stable than a p-wave one, but the transition temperature is found to be of the order of 0.1 mK at most. Furthermore, in the reaction matrix theory, it is found that a d-wave superfluid state becomes more stable than a p-wave one at ρ2D ≳0.035 Å−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. S. Greywall, Phys. Rev. B 41, 1842 (1990).

    Google Scholar 

  2. D. S. Greywall and P. A. Busch, Phys. Rev. Lett. 65, 64 (1990).

    Google Scholar 

  3. C. P. Lusher, B. P. Cowan, and J. Saunders, Phys. Rev. Lett. 67, 2497 (1991).

    Google Scholar 

  4. K.-D. Morhard, J. Bossy, and H. Godfrin, Phys. Rev. B 51, 446 (1995).

    Google Scholar 

  5. K.-D. Morhard, C. Bäuerle, J. Bossy, Yu. Bunkov, S. N. Fisher, and H. Godfrin, Phys. Rev. B 53, 2658 (1996).

    Google Scholar 

  6. C. Bäuerle, Yu. M. Bunkov, A. S. Chen, S. N. Fisher, and H. Godfrin, J. Low Temp. Phys. 110, 333 (1998).

    Google Scholar 

  7. M. Morishita, K. Ishida, Y. Yawata, H. Nagatani, and H. Fukuyama, J. Low Temp. Phys. 110, 351 (1998).

    Google Scholar 

  8. A. Casey, H. Patel, J. Nyéki, B. P. Cowan, and J. Saunders, J. Low Temp. Phys. 113, 293 (1998).

    Google Scholar 

  9. K. A. Brueckner, T. Soda, P. W. Anderson, and P. Morel, Phys. Rev. 118, 1442 (1960).

    Google Scholar 

  10. A. J. Leggett, Rev. Mod. Phys. 47, 331 (1975).

    Google Scholar 

  11. S. Nakajima, Prog. Theor. Phys. 50, 1101 (1973).

    Google Scholar 

  12. W. F. Brinkman and P. W. Anderson, Phys. Rev. A 8, 2732 (1973).

    Google Scholar 

  13. Y. Kuroda, Prog. Theor. Phys. 51, 1269 (1974); ibid. 53, 349 (1975).

    Google Scholar 

  14. M. D. Miller and L. H. Nosanow, J. Low Temp. Phys. 32, 145 (1978).

    Google Scholar 

  15. B. Brami, F. Joly, and C. Lhuillier, J. Low Temp. Phys. 94, 63 (1994).

    Google Scholar 

  16. For a recent review, see R. B. Hallock, Physics Today 51, No. 6, 30 (1998).

    Google Scholar 

  17. For a He atom on graphite, see W. E. Carlos and M. W. Cole, Surf. Sci. 91, 339 (1980).

    Google Scholar 

  18. A. D. McLachlan, Mol. Phys. 7, 381 (1964); L. W. Bruch, Surf. Sci. 125, 194 (1983).

    Google Scholar 

  19. W. Kohn and K. H. Lau, Surf. Sci. 65, 607 (1977); K. H. Lau, Solid State Commun. 28, 757 (1978); J. M. Gottlieb and L. W. Bruch, Phys. Rev. B 48, 3943 (1993).

    Google Scholar 

  20. P. W. Anderson and P. Morel, Phys. Rev. 123, 1911 (1961); P. W. Anderson and W. F. Brinkman, Theory of Anisotropic Superfluidity in 3He, in The Physics of Liquid and Solid Helium, Part II, edited by K. H. Bennemann and J. B. Ketterson, Wiley, New York (1978).

    Google Scholar 

  21. J. De Boer and A. Michels, Physica 5, 945 (1938); J. De Boer and R. J. Lunbeck, Physica 14, 510 (1948).

    Google Scholar 

  22. R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61, 1487 (1987).

    Google Scholar 

  23. K. Miyake, Prog. Theor. Phys. 69, 1794 (1983).

    Google Scholar 

  24. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, Pergamon, New York (1977), Sec. 133.

    Google Scholar 

  25. A. V. Chubukov and A. Sokol, Phys. Rev. 49, 678 (1994).

    Google Scholar 

  26. L. P. Gorkov and T. K. Melik-Barkhudarov, Zh. Eksp. Teor. Eiz. 40, 1452 (1961) [Sov. Phys. JETP 13, 1018 (1961)].

    Google Scholar 

  27. D. S. Hirashima and H. Takahashi, J. Phys. Soc. Jpn. 67, 3816 (1998); D. S. Hirashima and K. Kubo, J. Phys. Soc. Jpn. 68, 2174 (1999).

    Google Scholar 

  28. H. Takahashi, J. Phys. Soc. Jpn. 68, 194 (1999).

    Google Scholar 

  29. S. Ohnishi and K. Miyake, J. Phys. Soc. Jpn. 68, 3927 (1999).

    Google Scholar 

  30. A. Bagchi, Phys. Rev. A 3, 1133 (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, H., Hirashima, D.S. Effective Interaction and Superfluidity in Two-dimensional Liquid 3He. Journal of Low Temperature Physics 121, 1–27 (2000). https://doi.org/10.1023/A:1026488008310

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026488008310

Keywords

Navigation