Skip to main content
Log in

Recent Advances in Vibration and Radiation of Musical Instruments

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper summarizes the state of the art in measurements and modeling of musical instruments with regard to vibration and radiation problems. Starting from the general requirements in this particular area, due to the high sensitivity of the human ear, a number of examples are given which are aimed at illustrating the concepts and methods used for investigating these specific mechanical structures. The description of experimental methods focuses on noncontact measurements. The presentation of the numerical methods, in both the time and frequency domain, is illustrated by current questions relative to various stringed and percussive instruments. Some unsolved problems, with special consideration of nonlinear effects, are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barlow, C., Materials selection for musical instruments. In: Myers, A. (ed.), ISMA 97, Edinburgh, U.K., August 1997. Institute of Acoustics (1997) pp. 68–78.

  2. Bork, I., Grand piano and upright piano: Differences in sound and radiation. In: Myers, A. (ed.), ISMA 97, Edinburgh, U.K., August 1997. Institute of Acoustics (1997) pp. 79–84.

  3. Bork, I., Chaigne, A., Trebuchet, L., Kosfelder, M. and Pillot, D., Comparison between modal analysis and finite element modeling of a marimba bar. Acustica (1999) (in press).

  4. Bretos, J., Santamaria, C., Ezcurra, A. and Moral, J., Natural eigenmodes and random response of the violin box. In: SFA (ed.), ISMA 95, Dourdan, France, July 1995. Jouve (1995) pp. 224–230.

  5. Bucur, V., Acoustics of Wood. CRC Press, Boca Raton, FL (1995).

    Google Scholar 

  6. Chaigne, A. and Askenfelt, A., Numerical simulations of piano strings. Part I. A physical model for a struck string using finite difference methods. J. Acoust. Soc. Amer. 95(2) (1994) 1112–1118.

    Article  ADS  Google Scholar 

  7. Chaigne, A. and Askenfelt, A., Numerical simulations of piano strings. Part II. Comparisons with measurements and systematic exploration of some hammer-string parameters. J. Acoust. Soc. Amer. 95(3) (1994) 1631–1640.

    Article  ADS  Google Scholar 

  8. Chaigne, A. and Doutaut, V., Numerical simulations of xylophones. Part I. Time-domain modeling of the vibrating bars. J. Acoust. Soc. Amer. 101(1) (1997) 539–557.

    Article  ADS  Google Scholar 

  9. Christian, R.R.D., Tubis, A., Anderson, C., Mills, R. and Rossing, T., Effects of air loading on timpani membrane vibration. J. Acoust Soc. Amer. 76(5) (1984) 1336–1345.

    Article  ADS  Google Scholar 

  10. David, B. and Boutillon, X., Using vacuum to measure the acoustical efficiency. In: SFA (ed.), ISMA 95, Dourdan, France, July 1995. Jouve (1995) pp. 380–385.

  11. Doutaut, V., Matignon, D. and Chaigne, A., Numerical simulations of xylophones. Part II. Time-domain modeling of the resonator and of the radiated sound pressure. J. Acoust Soc. Amer. 104(3) (1998) 1633–1647.

    Article  ADS  Google Scholar 

  12. Fletcher, N.H. and Rossing, T.D., Physics of Musical Instruments. Springer-Verlag, New York (1991).

    Google Scholar 

  13. Guettler, K., Bow notes. In: Myers, A. (ed.), ISMA 97, Edinburgh, U.K., August 1997. Institute of Acoustics (1997) pp. 1–10.

  14. Hartmann, W., Signals, Sound, and Sensation. AIP Press, Woodbury (1997).

    Google Scholar 

  15. Hirschberg, A., Kergomard, J. and Weinreich (eds), Mechanics of Musical Instruments, Courses and Lectures, Vol. 355 by CISM (International Center of Mechanical Sciences), Udine, Italy. Springer-Verlag, New York (1995)

  16. Isaksson, A., Saldner, H. and Molin, N.E., Influence of enclosed air on vibration modes of a shell structure. J. Sound Vibration 187(3) (1995) 451–466.

    Article  Google Scholar 

  17. Lambourg, C., Modèle temporel pour la simulation numérique de plaques vibrantes. Application à la synthèse sonore. Ph.D. Thesis, Université du Maine (1997).

  18. Lambourg, C. and Chaigne, A., Time-domain simulation of thin damped orthotropic plates. J. Acoust Soc. Amer. (1997) (submitted).

  19. Lambourg, C., Huet, M. and Chaigne, A., Numerical simulations of stringed instruments: Modeling of string-plate and plate-cavity coupling. In: Myers, A. (ed.), ISMA 97, Edinburgh, U.K., tAugust 1997. Institute of Acoustics (1997) pp. 225–230.

  20. Laroche, J. and Meillier, J.-L., Multichannel excitation/filter modeling of percussive sounds with application to the piano. IEEE Trans. Speech and Audio Processing 2(2) (1994) 329–344.

    Article  Google Scholar 

  21. Le Pichon, A., Berge, S. and Chaigne, A., Comparison between experimental and predicted radiation of a guitar. Acustica 84 (1998) 136–145.

    Google Scholar 

  22. Mansell, E. and Rossing, T., Sound radiation from bass handbells. In: SFA (ed.), ISMA 95, Dourdan, France, July 1995. Jouve (1995) pp. 399–405.

  23. Molin, N.-E., Wåhlin, A.O. and Jansson, E.V., Transient wave response of the violin revisited. J. Acoust Soc. Amer. 90(4) (1991) 2192–2195.

    Article  ADS  Google Scholar 

  24. Mueller, G. and Lauterborn, W., The bowed string as a nonlinear dynamical system. Acustica 82 (1996) 657–664.

    Google Scholar 

  25. Ramdane, A., Modèles numériques de structures vibrantes mono-et bidimensionnelles pour la synthèse sonore par modèle physique. Ph.D. Thesis, Ecole Nationale Supérieure des Télécommunciations (1991).

  26. Richardson, B., Numerical modeling of stringed musical instruments. In: Friberg, A. (ed.), SMAC 93, Stockholm, Sweden, July 1993. Royal Swedish Academy of Music (1993) pp. 457–462.

  27. Richardson, B. and Roberts, G., The adjustment of mode frequencies in guitars: A study by means of holographic interferometry and finite element analysis. In: Askenfelt, A. (ed.), SMAC 83, Stockholm, Sweden, July 1983, Vol. II. Royal Swedish Academy of Music (1983) pp. 285–302.

  28. Rossing, T.D., Acoustics of percussion instruments: Part I. The Physics Teacher 14 (1976) 546–556.

    ADS  Google Scholar 

  29. Rossing, T.D., Acoustics of percussion instruments: Part II. The Physics Teacher 15 (1977) 278–288.

    ADS  Google Scholar 

  30. Schedin, S., Gren, P.O. and Rossing, T., Transient wave propagation in a cymbal. In: Myers, A. (ed.), ISMA 97, Edinburgh, U.K., August 1997. Institute of Acoustics (1997) 201–206.

  31. Schleske, M., Investigations on the changes of eigenfrequencies and mode shapes in the working process of the violin. In: SFA (ed.), ISMA 95, Dourdan, France, July 1995. Jouve (1995) 213–223.

  32. Touze, C., Analyse d'instruments de percussion non-linéaires. Mémoire de DEA ATIAM, Université de la Méditerranée, Aix-Marseille II (1997).

    Google Scholar 

  33. Weinreich, G., Sound hole sum rule and the dipole moment of the violin. J. Acoust. Soc. Amer. 77 (1985) 710–718.

    Article  ADS  Google Scholar 

  34. Woodhouse, J., Computer modeling of the bowed string. In: Friberg, A. (ed.), SMAC 93, Stockholm, Sweden, July 1993. Royal Swedish Academy of Music (1993) pp. 589–593.

  35. Woodhouse, J., On the playability of violins, Part 1. Reflection functions. Acustica 78 (1993) 125–136.

    Google Scholar 

  36. Woodhouse, J., On the playability of violins, Part 2. Minimum bow force and transients. Acustica 78 (1993) 137–153.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaigne, A. Recent Advances in Vibration and Radiation of Musical Instruments. Flow, Turbulence and Combustion 61, 31–41 (1998). https://doi.org/10.1023/A:1026480600366

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026480600366

Navigation