Skip to main content
Log in

Nitrogen Availability and Defense of Tomato Against Two-spotted Spider Mite

  • Published:
Journal of Chemical Ecology Aims and scope Submit manuscript

Abstract

The aim of this work was to study how nitrogen availability affects within-plant allocation to growth and secondary metabolites and how this allocation affects host selection by herbivores. Tomato plants (Lycopersicon esculentum) were grown at six levels of nitrogen availability. When nitrogen availability increased, plant relative growth rate increased, but tissue carbon/nitrogen ratio in the second oldest true leaf and allocation to large glandular trichomes (type VI) as well as to the defense compounds rutin and chlorogenic acid decreased. Leaf protein concentration increased. Two-spotted spider mite (Tetranychus urticae) females responded significantly to these changes: in dual choice tests they preferred leaf disks from plants grown at high nitrogen availability, with a low C/N ratio. This preference persisted in an olfactometer in which the mites were offered only the odors released by leaves with damaged trichomes. We conclude that in a tomato leaf increased nitrogen availability leads to decreased allocation to defenses, and that repellent volatiles released by trichomes play a key role in affecting leaf selection by two-spotted spider mite females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Aina, O. J., Rodriguez, J. G., and Knavel D. E. 1972. Characterizing resistance to Tetranycus urticae in tomato. J. Econ. Entomol. 65:641–643.

    Google Scholar 

  • Al Rouz, H., and Thibout, E. 1988. Analyse en olfactomètre de l'attraction des larves d'Acrolepiopsis assectella par des substances allélochimiques. Entomol. Exp. Appl. 47:231–237.

    Google Scholar 

  • Bryant, J. P., Chapin, F. S., and Klein, D. R. 1983. Carbon /nutrient balance of boreal plants in relation to vertebrate herbivory. Oikos 40:357–368.

    Google Scholar 

  • Buttery, R. G., Ling, L. C., and Light, D. M. 1987. Tomato leaf volatile aroma components. J. Agric. Food. Chem. 35:1039.

    Google Scholar 

  • Chatzivasileiadis, E. A., and Sabelis, M. A. 1997. Toxicity of methyl ketones from tomato trichomes to Tetranychus urticae Koch. Exp. Appl. Acarol. 21:473–484.

    Google Scholar 

  • Cook, S. P. 1992. Influence of monoterpene vapors on spruce spider mite, Oligonychus ununguis, adult females. J. Chem. Ecol. 18:1497–1504.

    Google Scholar 

  • Dicke, M., Takabayashi, J., Posthumus, M. A., SchÜtte, C., and Krips, O. E. 1998. Plant-phytoseiid interactions mediated by herbivore-induced plant volatiles: Variation in production of cues and in responses of predatory mites. Exp. Appl. Acarol. 22:311–333.

    Google Scholar 

  • Dormont, L., Roques, A., and Malosse, C. 1997. Efficiency of spraying mountain pine cones with oleoresin of Swiss stone pine cones to prevent insect attack. J. Chem. Ecol. 23:2262–2274.

    Google Scholar 

  • Elliger, C. A., Wong, Y., Chan, B. G., and Waiss, A. C. 1981. Growth inhibitors in tomato (Lycopersicon) to tomato fruitworm (Heliothis zea). J. Chem. Ecol. 7:753–758.

    Google Scholar 

  • Farrar, R. R., and Kennedy, G. G. 1991. Insect and mite resistance in tomato, pp. 121–142, in G. Kalloo (ed.). Genetic Improvement of Tomato. Springer-Verlag, Berlin.

    Google Scholar 

  • Gentile, A. G., Webb, R. E., and Stoner, A. K. 1969. Lycopersicon and Solanum spp. resistant to the carmine and the two-spotted spider mite. J. Econ. Entomol. 62:834–836.

    Google Scholar 

  • Grostal, P., and Dicke, M. 1999. Direct and indirect cues of predator risk influence behavior and reproduction of prey: A case for acarine interactions. Behav. Ecol. 10:422–427.

    Google Scholar 

  • Hanna, M. A., Zaher, M. A., and Ibrahim, S. M. 1982. Some probable causes of host preference in six species of phytophagous mites. Z. Angew. Entomol. 93:329–333.

    Google Scholar 

  • Herms, D. A., and Mattson, W. J. 1992. The dilemma of plants: To grow or to defend. Q. Rev. Biol. 67:283–335.

    Google Scholar 

  • Hoffland, E., Van Beusichem, M. L., and Jeger, M. J. 1999. Nitrogen availability and susceptibility of tomato leaves to Botrytis cinerea. Plant Soil 210:263–272.

    Google Scholar 

  • Ingestad, T., and Lund, A. B. 1979. Nitrogen stress in birch seedlings. I. Growth technique and growth. Physiol. Plant45:137–148.

    Google Scholar 

  • Isman, M. B., and Duffey, S. S. 1982. Toxicity of tomato phenolic compounds to the fruitworm, Heliothis zea. Entomol. Exp. Appl. 31:370–376.

    Google Scholar 

  • Jansen, M. P. T., and Stamp, N. E. 1997. Effects of light availability on host plant chemistry and the consequences for behavior and growth of an insect herbivore. Entomol. Exp. Appl. 82:319–333.

    Google Scholar 

  • Jones, C. G., Hare, J. D., and Compton, S. J. 1989. Measuring plant protein with the Bradford assay. 1. Evaluation and standard method. J. Chem. Ecol. 15:979–991.

    Google Scholar 

  • Kielkiewicz, M. 1994. The appearance of phenolics in tomato leaf tissue exposed to spider mite attack. Acta Hortic. 381:687–690.

    Google Scholar 

  • Kriesch, S., and Dicke, M. 1997. Avoidance of predatory mites by the two-spotted spider mite Tetranychus urticae: The role of infochemicals. Proc. Sect. Exp. Appl. Entomol. Neth. Entomol. Soc. 8:121–126.

    Google Scholar 

  • Loomis, W. E. 1932. Growth-differentiation balance vs. carbohydrate-nitrogen ratio. Proc. Am. Soc. Hortic. Sci. 29:240–245.

    Google Scholar 

  • Luckwill, L. C. 1943. The Genus Lycopersicon: An Historical, Biological, and Taxonomic Survey of the Wild and Cultivated Tomatoes. The University Press, Aberdeen.

    Google Scholar 

  • Mattson, W. J. 1980. Herbivory in relation to plant nitrogen content. Annu. Rev. Ecol. Syst. 11:119–161.

    Google Scholar 

  • McNeill, S., and Southwood, T. R. E. 1978. The role of nitrogen in the development of insect /plant relationships, pp. 77–98, in J. B. Harborne (ed.). Biochemical Aspects of Plant and Animal Coevolution. Academic Press, London.

    Google Scholar 

  • Pella, E., and Colombo, B. 1973. Study of carbon, hydrogen and nitrogen determination by combustion-gas chromatography. Mikrochim. Acta 1973:697–719.

    Google Scholar 

  • Rasmy, A. H. 1985. The biology of the two-spotted spider mite Tetranychus urticae as affected by solanaceous plants. Agric. Ecosyst. Environ. 13:325–328.

    Google Scholar 

  • Ridsdill-Smith, T. J., Jiang, Y., and Ghisalberti, E. L. 1995. A method to test compounds for feeding deterrence towards redlegged earth mite (Acarina: Penthaleidae). Ann. Appl. Biol. 127:593–600.

    Google Scholar 

  • Snyder, J. C., and Carter, C. D. 1985. Trichomes on leaves of Lycopersicon hirsutum, L. esculentum and their hybrids. Euphytica 34:53–64.

    Google Scholar 

  • Stamp, N. E., and Yang, Y. 1996. Response of insect herbivores to multiple allelochemicals under different thermal regimes. Ecology 77:1088–1102.

    Google Scholar 

  • Takabayashi, J., and Dicke, M. 1992. Response of predatory mites with different rearing histories to volatiles of uninfested plants. Entomol. Exp. Appl. 64:187–193.

    Google Scholar 

  • Tomczyk, A., and KropczyÑska, D. 1985. Effects on the host plant, pp. 317–329, in W. Helle and M. W. Sabelis (eds.). Spider Mites, Their Biology, Natural Enemies and Control. Elsevier, Amsterdam.

    Google Scholar 

  • Tulisalo, U. 1971. Free and bound amino acids of three host plant species and various fertilizer treatments affecting the fecundity of the two-spotted spider mite, Tetranychus urticae Koch (Acarina, Tetranychidae). Ann. Entomol. Fenn. 37:155–163.

    Google Scholar 

  • Van Haren, R. J. F., Steenhuis, M. M., Sabelis, M. W., and De Ponti, O. M. B. 1987. Tomato stem trichomes and dispersal success of Phytoseiulus persimilis relative to its prey Tetranychus urticae. Exp. Appl. Acarol. 3:115–121.

    Google Scholar 

  • Weston, P. A., Johnson, D. A., Burton, H. T., and Snyder, J. C. 1989. Trichome secretion composition, trichome densities, and spider mite resistance of ten accessions of Lycopersicon hirsutum. J. Am. Soc. Hortic. Sci. 114:492–498.

    Google Scholar 

  • Wilkens, R. T., Shea, G. O., Halbreich, S., and Stamp, N. E. 1996a. Resource availability and the trichome defenses of tomato plants. Oecologia 106:181–191.

    Google Scholar 

  • Wilkens, R. T., Spoerke, J. M., and Stamp, N. E. 1996b. Differential responses of growth and two soluble phenolics of tomato to resource availability. Ecology 77:247–258.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoffland, E., Dicke, M., Van Tintelen, W. et al. Nitrogen Availability and Defense of Tomato Against Two-spotted Spider Mite. J Chem Ecol 26, 2697–2711 (2000). https://doi.org/10.1023/A:1026477423988

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026477423988

Navigation