Skip to main content
Log in

Response of a Thin Cylindrical Shell Excited by a Turbulent Internal Flow

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

This paper presents results obtained within the scope of a collaboration between the “Laboratoire de Mécanique et d'Acoustique” (Marseille, France), the “Laboratoire de Mécanique des Fluides et d'Acoustique” of the Ecole Centrale (Lyon, France) and the “Laboratoire de Vibrations et d'Acoustique” of the Institut National des Sciences Appliquées (Lyon, France). The main aspect of this collaboration is to establish a comparison between a measured and a model vibro-acoustics response of a thin cylindrical pipe excited by a turbulent internal flow. After a brief review of the literature, a model of the response of the shell, based on a matched asymptotic expansion, is given. Some numerical results are also given. The spectral density of the acceleration of the shell is compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M. and Stegun, I.A. Handbook of Mathematical Functions. Dover Publications, New York (1968).

    Google Scholar 

  2. Blake, W.K., Mechanics of Flow-Induced Sound and Vibration, Volumes 1 and 2. Academic Press, New York (1986).

    Google Scholar 

  3. Bull, M.K., Wall-pressure fluctuation beneath turbulent boundary layers: Some reflections on forty years of research. Journal of Sound and Vibration 190(3) (1996) 299–315.

    Article  Google Scholar 

  4. Chase, D.M., The character of the turbulent wall pressure spectrum at subconvective wavenumbers and a suggested comprehensive model. Journal of Sound and Vibration 112(1) (1987) 125–147.

    ADS  Google Scholar 

  5. Clinch, J.M., Prediction and measurement of the vibrations induced in thin walled pipes by the passage of internal turbulent water flow. Journal of Sound and Vibration 12(4) (1970) 429–451.

    Google Scholar 

  6. Corcos, G.M., Resolution of pressure in turbulence. Journal of the Acoustical Society of America 35(2) (1963) 192–199.

    Article  Google Scholar 

  7. Durant, C. and Robert, G., Vibro-acoustic response of a pipe excited by a turbulent internal flow. In: Euromech Colloquium 369, Fluid-Structure Interaction in Acoustics, Delft University of Technology, The Netherlands (1997).

    Google Scholar 

  8. Filippi, P.J.T., Mattei, P.-O., van der Burgh, A.H.P., de Jong, K., Wauer, J. and Huber, H., Approximation fluide léger pour une plaque mince bafflée: Comparaison avec la résolution numérique des équations exactes et avec l'expérience. In: Bouc, R. (ed.), Réunion du GDR Vibroacoustique, LMA, Marseille (1996) pp. 427–48.

    Google Scholar 

  9. Kress, R., Linear Integral Equations. Springer-Verlag, Berlin (1989).

    Google Scholar 

  10. Kriegsmann, G.A., Norris, A. and Reiss, E.L., Acoustic scattering by baffled membranes. Journal of the Acoustical Society of America 75(3) (1984) 685–694.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. Leehey, P., Structural excitation by turbulent boundary layer: An overview. Transation of the ASME, Journal of Vibration, Acoustics, Stress, and Reliability in Design 110 (1988) 220–225.

    ADS  Google Scholar 

  12. Mattei, P.-O., Sound radiation by a baffled shell: Comparison of the exact and an approximate solution. Journal of Sound and Vibration 188(1) (1995) 111–130.

    Article  Google Scholar 

  13. Mazzoni, D., 1994. Sur la modélisation du rayonnement acoustique de sources aléatoires: problème direct et problème inverse. Thèse No. 2079448, Institut de Mécanique de Marseille, Université Aix-Marseille II, France (1994).

    Google Scholar 

  14. Morse, P.M. and Feshbach, H., Methods of Theoretical Physics. McGraw-Hill, New York (1953).

    Google Scholar 

  15. Morse, P.M. and Ingard, K.U., Theoretical Acoustics. McGraw-Hill, New York (1968).

    Google Scholar 

  16. Nayfeh, A.H., Introduction to Perturbation Techniques. John Wiley & Sons, New York (1993).

    Google Scholar 

  17. Norris, A.N., Resonant acoustic scattering from solid targets. Journal of the Acoustical Society of America 88(1) (1990) 505–514.

    Article  ADS  Google Scholar 

  18. Norton, M.P. and Bull, M.K., Mechanisms of generation of external acoustic radiation from pipes due to internal flow disturbances. Journal of Sound and Vibration 94(1) (1984) 105–146.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mattei, PO., Filippi, P.J. Response of a Thin Cylindrical Shell Excited by a Turbulent Internal Flow. Flow, Turbulence and Combustion 61, 85–99 (1998). https://doi.org/10.1023/A:1026476532225

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026476532225

Navigation