Skip to main content
Log in

Noise Field in the Human Chest Due to Turbulent Flow in a Larger Blood Vessel

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

An acoustic model of a larger human blood vessel is developed. This model takes into account the main features of the acoustic generation and propagation of noise in the human chest from the source (turbulent pressure fluctuations in blood flow) to a receiver resting on the skin, and allows the consideration of a simple stenotic narrowing in the vessel. The low Mach number turbulent wall pressure models of Corcos, Chase, Ffowcs Williams, and Smol'yakov and Tkachenko are used to describe random sources in the vessel. The relationships obtained permit one to analyse the dependence of the resultant acoustic field in the thorax on the parameters of the blood flow and the vessel, and show the possibility of finding characteristic signs of the presence of a stenosis by comparison of noise fields from intact and diseased arteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giddens, D.P., Mabon, R.F. and Cassanova, R.A., Measurements of disordered flow distal to subtotal vascular stenosis in the thoracic aorta of canines. Circ. Res. 39 (1976) 112–119.

    Google Scholar 

  2. Tobin, R.J. and Chang, I.D., Wall pressure spectra scaling downstream of stenoses in steady tube flow. J. Biomech. 9 (1976) 633–640.

    Article  Google Scholar 

  3. Clark, C., Turbulent velocity measurements in a model of aortic stenosis. J. Biomech. 9 (1976) 677–687.

    Article  Google Scholar 

  4. Clark, C., Turbulent wall pressure measurements in a model of aortic stenosis. J. Biomech. 10 (1977) 461–472.

    Article  Google Scholar 

  5. Khalifa, A.M. and Giddens, D.P., Analysis of disorder in pulsatile flows with application to poststenotic blood velocity measurement in dogs. J. Biomech. 11 (1978) 129–141.

    Article  Google Scholar 

  6. Gosling, R.G. and King, D.H., Continuous wave ultrasound as an alternative and complement to X-rays in vascular examinations. In: Reneman, R.S. (ed.), Cardiovascular Applications of Ultrasound. Elsevier, New York (1974) pp. 266–282.

    Google Scholar 

  7. Fitzgerald, D.E. and Carr, J., Doppler ultrasound diagnosis and classification as an alternative to arteriography. Angiology 26 (1975) 283–288.

    Google Scholar 

  8. Lees, R.S. and Dewey, C.F., Jr., Phonoangiography: A new noninvasive diagnostic method for studying arterial disease. Proc. Nat. Acad. Sci. 67 (1970) 935–942.

    Article  ADS  Google Scholar 

  9. Fredberg, J.J., Pseudosound generation at atherosclerotic constrictions in arteries. Bull. Math. Biol. 36 (1974) 143–155.

    Article  MATH  Google Scholar 

  10. Fredberg, J.J., Origin and character of vascular murmurs: Model studies. J. Acoust. Soc. Amer. 61 (1977) 1077–1085.

    Article  ADS  Google Scholar 

  11. Duncan, G.W., Gruber, J.O., Dewey, C.F., Jr., Myers, G.S. and Lees, R.S., Evaluation of carotid stenosis by phonoangiography. New Eng. J. Med. 293 (1975) 1124–1128.

    Article  Google Scholar 

  12. Pitts, W.H., III and Dewey, C.F., Jr., Spectral and temporal characteristics of post-stenotic turbulent wall pressure fluctuations. ASME J. Biomech. Engrg. 101 (1979) 89–95.

    Google Scholar 

  13. Gavriely, N., Palto, Y. and Alroy, G., Spectral characteristics of normal breath sounds. J. Appl. Physiol. 50 (1980) 307–314.

    Google Scholar 

  14. Kraman, S.S., Determination of the site of production of respiratory sounds by subtraction phonopneumography. Amer. Rev. Resp. Dis. 122 (1980) 303–314.

    Google Scholar 

  15. Charbonneu, G., Raccineux, J.L., Subraud, M. and Tuchais, E., An accurate recording system and its use in breath sounds spectral analysis. J. Appl. Physiol. 55 (1983) 1120–1127.

    Google Scholar 

  16. Cohen, A. and Landsberg, D., Analysis and automatic classification of breath sounds. IEEE +wans. Biomed. Engrg. BME-31 (1984) 585–590.

    Google Scholar 

  17. Vovk, I.V., Grinchenko, V.T., Krasnyi, L.G. and Makarenkov, A.P., Breath sounds: Recording and classification problems. Akust. Zhurn. 40 (1994) 50–56 [in Russian].

    Google Scholar 

  18. Makarenkov, A.P. and Rudnitskii, A.G., Diagnosis of lung pathologies by two-channel processing of breath sounds. Akust. Zhurn. 41 (1995) 272–277 [in Russian].

    Google Scholar 

  19. Borisyuk, A.O., Noise generation by flow in pipes in presence of wall obstructions. Rep. Acad. Sci. Ukr. 11 (1996) 66–70 [in Ukrainian].

    MATH  Google Scholar 

  20. Borisyuk, A.A., Noise generated by steady flow in human blood vessels in presence of stenoses. Bionics 27-28 (1998) 144–151 [in Russian].

    Google Scholar 

  21. Kim, B. and Corcoran, W.K., Experimental measurement of turbulence spectra distal to stenosis. J. Biomech. 7 (1974) 335–342.

    Article  Google Scholar 

  22. Wang, J., Tie, B., Welkowitz, W., Semmlow, J.L. and Kostis, J.B., Modeling sound generation in stenosed coronary arteries. IEEE Trans. Biomed. Engrg. 37 (1990) 1087–1094.

    Article  Google Scholar 

  23. Wodicka, G.R., Stevens, K.N., Golub, H.L., Growalho, E.G. and Shanon, D.C., A model of acoustic transmission in the respiratory system. IEEE Trans. Biomed. Engrg. 36 (1989) 925–933.

    Article  Google Scholar 

  24. Wodicka, G.R., Stevens, K.N., Golub, H.L. and Shanon, D.C., Spectral characteristics of sound transmission in the human respiratory system. IEEE Trans. Biomed. Engrg. 37 (1990) 1130–1134.

    Article  Google Scholar 

  25. Vovk, I.V., Zalutskii, K.E. and Krasnyi, L.G., Acoustic model of the human respiratory system. Akust. Zhurn. 40 (1994) 762–767 [in Russian].

    Google Scholar 

  26. Corcos, G.M., The resolution of pressure in turbulence. J. Acoust. Soc. Amer. 35 (1963) 192–199.

    Article  ADS  Google Scholar 

  27. Borisyuk, A.O. and Grinchenko, V.T., Vibration and noise generation by elastic element excited by a turbulent flow. J. Sound Vibr. 204 (1997) 213–237.

    Article  ADS  Google Scholar 

  28. Martin, N.C. and Leehey, P., Low wavenumber wall pressure measurements using a rectangular membrane as a spatial filter. J. Sound Vibr. 52 (1977) 95–120.

    Article  ADS  Google Scholar 

  29. Young, D.F., Fluid mechanics of arterial stenoses. J. Biomech. Engrg. 101 (1979) 157–175.

    Google Scholar 

  30. Mirolyubov, S.G., Hydrodynamics of stenosis. Modern Probl. Biomech. 1 (1983) 73–136 [in Russian].

    Google Scholar 

  31. Blake, W.K. (ed.), Mechanics of Flow-Induced Sound and Vibration (two volumes). Academic Press, New York (1986) 954 pp.

    MATH  Google Scholar 

  32. Ffowcs Williams, J.E., Boundary-layer pressures and the Corcos model: A development to incorporate low-wavenumber constraints. J. Fluid Mech. 125 (1982) 9–25.

    Article  MATH  ADS  Google Scholar 

  33. Smol'yakov, A.V. and Tkachenko, V.M., Models of pseudosound turbulent wall pressure field and experimental data. Akust. Zhurn. 37 (1991) 1199–1207 [in Russian].

    ADS  Google Scholar 

  34. Chase, D.M., Modeling the wavevector-frequency spectrum of turbulent boundary layer wall pressure. J. Sound Vibr. 70 (1980) 29–67.

    Article  MATH  ADS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisyuk, A. Noise Field in the Human Chest Due to Turbulent Flow in a Larger Blood Vessel. Flow, Turbulence and Combustion 61, 269–284 (1998). https://doi.org/10.1023/A:1026462706646

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026462706646

Navigation