Skip to main content
Log in

Reaction–Diffusion Patterns in Confined Chemical Systems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We review on the effects of the feed mode on pattern selection observed in chemical systems operated in open spatial reactors. In two-side-fed reactors, strong parameter ramps naturally confine patterns in a stratum. The reactor thickness acts both as a genuine bifurcation parameter and on the pattern dimensionality. Depending on that thickness, standard 2D hexagon and stripe Turing patterns or more complex 3D planforms are observed. In thin one-side-fed reactors, patterning process must escape the imposed fixed boundary conditions either by devices introducing mixed boundary conditions or by an intrinsic phenomenon dubbed “spatial bistability.” We show that in most cases, for a comprehensive understanding of experimental observations, the full 3D aspects have to be taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. M. Turing, Philos. Trans. R. S. London, B 327:37 (1952).

    Google Scholar 

  2. J. F. G. Auchmuty and G. Nicolis, Bull. Math. Biol. 37:323 (1975).

    Google Scholar 

  3. G. Nicolis and I. Prigogine, Self Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    Google Scholar 

  4. V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Phys. Rev. Lett. 64:2953 (1990).

    Google Scholar 

  5. D. Walgraef, G. Dewel, and P. Borckmans, Adv. Chem. Phys. 49:311 (1982); A. De Wit, P Borckmans, G. Dewel, and D. Walgraef, Physica D 61:289 (1992).

    Google Scholar 

  6. P. Borckmans, G. Dewel, A. De Wit, and D. Walgraef, in Chemical Waves and Patterns, Chap. 10, Understanding Chemical Reactivity, Vol. 10, R. Kapral and K. Showalter, eds. (Kluwer Academic Publisher, 1994).

  7. A. De Wit, Adv. Chem. Phys. 109:435 (1999).

    Google Scholar 

  8. A. De Wit, P. Borckmans, and G. Dewel, Proc. Nat. Acad. Sci. (USA) 94:12765 (1997).

    Google Scholar 

  9. T. Ohta, M. Mimura, and P. Kobayashi, Physica D 34:115 (1989).

    Google Scholar 

  10. A. Hagberg and E. Meron, Phys. Rev. E 48:705 (1993); A. Hagberg and E. Meron, Non Linearity 7:805 (1994); A. Hagberg and E. Meron, Chaos 4:477 (1994); A. Hagberg, E. Meron, I. Rubinstein, and B. Zaltman, Phys. Rev. E 55:4450 (1997).

    Google Scholar 

  11. Q. Ouyang, Z. Noszticzius, and H. L. Swinney, J. Chem. Phys. 96:6773 (1992).

    Google Scholar 

  12. P. De Kepper, J. J. Perraud, B. Rudovics, and E. Dulos, Int. J. Bif. Chaos 4:1215 (1994); J. J. Perraud, A. De Wit, E. Dulos, P. De Kepper, G. Dewel, and P. Borckmans, Phys. Rev. Lett. 71:1272 (1993).

    Google Scholar 

  13. H. Kidachi, Prog. Theor. Phys. 63:1152 (1980).

    Google Scholar 

  14. A. Rovinsky and M. Menzinger, Phys. Rev. A 46:6315 (1992).

    Google Scholar 

  15. A. De Wit, D. Lima, G. Dewel, and P. Borckmans, Phys. Rev. E 54:261 (1996).

    Google Scholar 

  16. I. Lengyel, G. Rabai, and I. R. Epstein, J. Am. Chem. Soc. 112:4606 (1990); I. Lengyel, G. Rabai, and I. R. Epstein, J. Am. Chem. Soc. 112:9104 (1990); I. Lengyel, J. Li, K. Kustin, and I. R. Epstein, J. Am. Chem. Soc. 118:3708 (1996).

    Google Scholar 

  17. I. Lengyel and I. R. Epstein, Science 251:650 (1990); I. Lengyel and I. R. Epstein, Proc. Nat. Sci. (USA) 89:3977 (1992).

    Google Scholar 

  18. J. E. Pearson and W. J. Bruno, Chaos 2:513 (1992).

    Google Scholar 

  19. J. Boissonade, J. Phys. France 49:541–546 (1988).

    Google Scholar 

  20. M. Herschkowitz-Kaufman and G. Nicolis, J. Chem. Phys. 56:1890 (1972).

    Google Scholar 

  21. S. Kadar, I. Lengeyl, and I. R. Epstein, J. Phys. Chem. 99:4054 (1995).

    Google Scholar 

  22. S. Setayeshgar and M. C. Cross, Phys. Rev. E 58:4485 (1998).

    Google Scholar 

  23. V. Dufiet and J. Boissonade, Phys. Rev. E 53:4883 (1996).

    Google Scholar 

  24. P. Borckmans, A. De Wit, and G. Dewel, Physica A 188:137 (1992).

    Google Scholar 

  25. Q. Ouyang and H. L. Swinney, Nature 352:610 (1991).

    Google Scholar 

  26. B. Rudovics, E. Dulos, and P. De Kepper, Physica Scripta T 67:43 (1996).

    Google Scholar 

  27. V. Dufiet and J. Boissonade, Physica A 188:158 (1992).

    Google Scholar 

  28. G. Dewel, P. Borckmans, and D. Walgraef, J. Phys. C 12:L491 (1979); D. Walgraef, G. Dewel, and P. Borckmans, Phys. Rev. A 21:397 (1980); D. Walgraef, G. Dewel, and P. Borckmans, Adv. Chem. Phys. 49:311 (1982).

    Google Scholar 

  29. L. M. Pismen, J. Chem. Phys. 72:1900 (1980).

    Google Scholar 

  30. E. Dulos, P. Davies, B. Rudovics, and P. De Kepper, Physica D 98:53 (1996).

    Google Scholar 

  31. B. Rudovics, Ph.D. Thesis (Bordeaux, 1995).

  32. Q. Ouyang, G. H. Gunaratne, and H. L. Swinney, Chaos 3:707 (1993).

    Google Scholar 

  33. M. G. M. Gomes, Phys. Rev. E 60:3741 (1999).

    Google Scholar 

  34. E. Dulos, A. Hunding, J. Boissonade, and P. De Kepper, in Transport and Structure: Their Competitive Roles in Biophysics and Chemistry, Lecture Notes in Physics, Vol. 352, S. C. Mueller, J. Paosi, and W. Zimmermann, eds., to appear.

  35. B. Rudovics, E. Barillot, P. W. Davies, E. Dulos, J. Boissonade, and P. De Kepper, J. Phys. Chem. 103:1790 (1999).

    Google Scholar 

  36. P. W. Davies, P. Blanchedeau, E. Dulos, and P. De Kepper, J. Chem. Phys. 102:8236 (1998).

    Google Scholar 

  37. P. Blanchedeau, J. Boissonade, and P. De Kepper, Physica D, submitted.

  38. K. J. Lee, D. McCormick, Q. Ouyang, and H. L. Swinney, Science 261:192 (1993); K. J. Lee and H. L. Swinney, Phys. Rev. E 51:1899 (1995).

    Google Scholar 

  39. P. Blanchedeau and J. Boissonade, Phys. Rev. Lett. 81:5007 (1998).

    Google Scholar 

  40. M. Bachir, P. Borckmans, and G. Dewel, Phys. Rev. E 59:86223 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Kepper, P., Dulos, E., Boissonade, J. et al. Reaction–Diffusion Patterns in Confined Chemical Systems. Journal of Statistical Physics 101, 495–508 (2000). https://doi.org/10.1023/A:1026462105253

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026462105253

Navigation