Skip to main content
Log in

Fourier Transform and Multi Dimensional EPR Spectroscopy for the Characterization of Sol-Gel Derived Hydroxyapatite

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Calcium hydroxyapatite powder was prepared by sol-gel method using calcium acetate and PO(OC2H5)3 as initial compounds, and alcohol (methyl, ethyl, and propyl-alcohol) as solvent. Homogeneous solution and gels were prepared using a molar ratio of Ca/P = 1.67. The evolution of the structure was detected by X-ray diffraction, IR, and FT-n(=1,2,3)D-EPR spectroscopy. The dried gels exhibit a signal characterized by a central line and two satellites. The 2D spectrum (ESEEM vs. field sweep) showed the same modulation for the central line. The FT-EPR spectrum vs. field sweep 2D-spectrum indicated that the satellites are due to an hfs splitting with water. The central region of this 2D spectrum is influenced by P and H in a concentration ratio of [H]/[P]=2.5. The ESEEM spectrum was simulated assuming the equation \(V_{\bmod } = V_{\bmod } (P)^m V_{\bmod } (H)^n \) for two spin systems S = 1/2 and I = 1/2. This simulation gave for m and n the values of 2 and 5, respectively. This finding suggests the structure:\(\begin{gathered} {\text{ O = P}}---{\text{O}}---{\text{CH}}_{\text{2}} ---{\text{CH}}_{\text{3}} \hfill \\ {\text{ |}} \hfill \\ {\text{ O}} \hfill \\ {\text{O}}---*{\text{P}}---{\text{O}}---{\text{CH}}_{\text{2}} ---{\text{CH}}_{\text{3}} \hfill \\ {\text{ |}} \hfill \\ {\text{ O}} \hfill \\ {\text{ O = P}}---{\text{O}}---{\text{CH}}_{\text{2}} ---{\text{CH}}_{\text{3}} \hfill \\ \end{gathered} \) for the unpaired state. It appears that one ethyl group does not hydrolyse in the gelation process. The ESEEM spectra of hydroxyapatite exhibit a modulation generated by P, H and Ca atoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.H. Doremus, J. Mat. Sci. 27, 285 (1992).

    Google Scholar 

  2. L.L. Hench, J. Am. Ceram. Soc. 74, 1487 (1991).

    Google Scholar 

  3. C. Laverinia, J.M. Schoenung, Ceramic Bulletin 70(1), 48 (1991).

    Google Scholar 

  4. M. Jarcho, C.H. Bolen, M.B. Thomas, J.F. Kay, and R.H. Doremus, J. Mater. Sci. 11, 2027 (1976).

    Google Scholar 

  5. M. Asada, K. Oukami, S. Nakamura, K. Takhashi, and Yogyio Kyokai-Shi (The Ceram. Sos., Japan, 1987), vol. 95, p. 703.

    Google Scholar 

  6. M. Akao, H. Aoki, and K. Kat., J. Mater. Sci. 16, 809 (1981).

    Google Scholar 

  7. A. Osaka, Y. Miura, K. Takeushi, M. Asada, and K. Takahashi, J. Mat. Sci.: Materials in Medicine 2, 51 (1991).

    Google Scholar 

  8. Y. Masuda, K. Matubara, and S. Sakka, J. Cer. Soc. Japan, Int. Edition 84, 98–1266.

  9. A. Deptula, W. Lada, T. Olczac, A. Borello, C. Alvani, and A. di Bartolomeo, J. of Non. Crystalline Solids 147 &148, 537 (1992).

    Google Scholar 

  10. T. Brendel, A. Engel, and C. Russel, J. Mat. Sci.: Materials in Medicine 175 (1992).

  11. S.P. Szu, L.C. Klein, and M. Greenblatt, J. Non-Cryst. Solids 143, 21 (1992).

    Google Scholar 

  12. K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds (Willey, New York, 1963).

    Google Scholar 

  13. C.C. Trapalis, A. Koufoudakis, I. Dounis, M.A. Karakasides, and G. Kordas, Chimica Chronica 23(2- 3), 205 (1994).

    Google Scholar 

  14. A. Bues, M. Gehreke, and Z. Anorg. Chem. 288, 291 (1956).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kordas, G., Trapalis, C. Fourier Transform and Multi Dimensional EPR Spectroscopy for the Characterization of Sol-Gel Derived Hydroxyapatite. Journal of Sol-Gel Science and Technology 9, 17–24 (1997). https://doi.org/10.1023/A:1026452021666

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026452021666

Navigation