Skip to main content
Log in

The Nosé–Hoover Thermostated Lorentz Gas

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We apply the Nosé–Hoover thermostat and three variations of it, which control different combinations of velocity moments, to the periodic Lorentz gas. Switching on an external electric field leads to nonequilibrium steady states for the four models. By performing computer simulations we study the probability density, the conductivity and the attractor in nonequilibrium. The results are compared to the Gaussian thermostated Lorentz gas and to the Lorentz gas as thermostated by deterministic scattering. We find that slight modifications of the Nosé–Hoover thermostat lead to different dynamical properties of our models. However, in all cases the attractor appears to be multifractal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

    Google Scholar 

  2. W. G. Hoover, Computational Statistical Mechanics (Elsevier, Amsterdam, 1991).

    Google Scholar 

  3. G. P. Morriss and C. P. Dettmann, Chaos 8:321 (1998).

    Google Scholar 

  4. S. Nosé, J. Chem. Phys. 81:511 (1984).

    Google Scholar 

  5. W. G. Hoover, Phys. Rev. A 31:1695 (1985).

    Google Scholar 

  6. W. G. Hoover, A. J. C. Ladd, and B. Moran, Phys. Rev. Lett. 48:1818 (1982).

    Google Scholar 

  7. D. J. Evans, J. Chem. Phys. 78:3297 (1983).

    Google Scholar 

  8. D. J. Evans et al., Phys. Rev. A 28:1016 (1983).

    Google Scholar 

  9. B. L. Holian, W. G. Hoover, and H. A. Posch, Phys. Rev. Lett. 59:10 (1987).

    Google Scholar 

  10. B. Moran and W. G. Hoover, J. Stat. Phys. 48:709 (1987).

    Google Scholar 

  11. W. G. Hoover and B. Moran, Phys. Rev. A 40:5319 (1989).

    Google Scholar 

  12. G. P. Morriss, Phys. Lett. A 134:307 (1989).

    Google Scholar 

  13. W. G. Hoover, Time Reversibility, Computer Simulation, and Chaos (World Scientific, Singapore, 1999).

    Google Scholar 

  14. Microscopic simulations of complex hydrodynamic phenomena, in NATO ASI Series B: Physics, Vol. 292, M. Mareschal and B. L. Holian, eds. (Plenum Press, New York, 1992).

  15. Chaos and irreversibility, in Chaos, Vol. 8, T. Té l, P. Gaspard, and G. Nicolis, eds. (American Institute of Physics, College Park, 1998).

  16. N. I. Chernov and J. L. Lebowitz, Phys. Rev. Lett. 75:2831 (1995).

    Google Scholar 

  17. H. A. Posch and W. G. Hoover, Phys. Rev. A 38:473 (1988).

    Google Scholar 

  18. N. L. Chernov, C. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, Phys. Rev. Lett. 70:2209 (1993).

    Google Scholar 

  19. N. L. Chernov, C. L. Eyink, J. L. Lebowitz, and Y. G. Sinai, Comm. Math. Phys. 154:569 (1993).

    Google Scholar 

  20. D. J. Evans, E. G. D. Cohen, and G. P. Morris, Phys. Rev. A 42:5990 (1990).

    Google Scholar 

  21. H. van Beijeren and J. R. Dorfman, Physica A 279:21 (2000).

    Google Scholar 

  22. J. Lloyd, L. Rondoni, and G. P. Morriss, Phys. Rev. E 50:3416 (1994).

    Google Scholar 

  23. J. Lloyd, M. Niemeyer, L. Rondoni, and G. P. Morriss, Chaos 5:536 (1995).

    Google Scholar 

  24. C. Dellago, L. Glatz, and H. A. Posch, Phys. Rev. E 52:4817 (1995).

    Google Scholar 

  25. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 54:4782 (1996).

    Google Scholar 

  26. M. Kac, Scientific American 211:92 (1964).

    Google Scholar 

  27. R. Klages, K. Rateitschak, and G. Nicolis, Phys. Rev. Lett. 84:4268 (2000).

    Google Scholar 

  28. K. Rateitschak, R. Klages, and G. Nicolis, J. Stat. Phys. 99:1339 (2000).

    Google Scholar 

  29. C. Wagner, R. Klages, and G. Nicolis, Phys. Rev. E 60:1401 (1999).

    Google Scholar 

  30. W. G. Hoover and B. Moran, Chaos 2:599 (1992).

    Google Scholar 

  31. W. G. Hoover, Phys. Rev. 40:2814 (1989).

    Google Scholar 

  32. W. G. Hoover and B. L. Holian, Phys. Lett. 211:253 (1996).

    Google Scholar 

  33. W. G. Hoover and O. Kum, Phys. Rev. E 56:5517 (1997).

    Google Scholar 

  34. J. Jellinek and R. S. Berry, Phys. Rev. A 38:3069 (1988).

    Google Scholar 

  35. A. Bulgac and D. Kusnezov, Phys. Rev. A 42:5045 (1990).

    Google Scholar 

  36. G. J. Martyna, M. L. Klein, and M. Tuckerman, J. Chem. Phys. 97:2635 (1992).

    Google Scholar 

  37. C. P. Dettmann and G. P. Morriss, Phys. Rev. E 55:3693 (1997).

    Google Scholar 

  38. R. Klages and K. Rateitschak, unpublished.

  39. K. Rateitschak, R. Klages, and W. G. Hoover, chao-dyn/9912018.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rateitschak, K., Klages, R. & Hoover, W.G. The Nosé–Hoover Thermostated Lorentz Gas. Journal of Statistical Physics 101, 61–77 (2000). https://doi.org/10.1023/A:1026447620778

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026447620778

Navigation