Skip to main content
Log in

Bioenergetics of Human Peripheral Blood Mononuclear Cell Metabolism in Quiescent, Activated, and Glucocorticoid-Treated States

  • Published:
Bioscience Reports

Abstract

The first quantitative findings on the energy metabolism of human immunecells are presented. In quiescent peripheral blood mononuclear cells(PBMC) protein biosynthesis and Na+,K+-ATPase activity eachaccounted for 8% of cellular oxygen consumption. Stimulation with 25, 50,and 75 μg Con A/ml (1.25, 2.5 or 3.75 μg/106 cells) increased totaloxygen consumption within seconds by 8, 36, and 53%, respectively. Afteraddition of 75 μg Con A/ml, the proportion of cellular oxygenconsumption due to protein biosynthesis, Na+,K+-ATPase activity,and Ca2+-ATPase activity was 15% each and that due to DNA/RNAsynthesis was 8%. On the basis of these findings the immediate effectsof five different glucocorticoids on cellular energy metabolism wereinvestigated. The various glucocorticoids exerted basically the sameinhibitory effects on Con A-stimulated cellular respiration and individualATP-consuming processes, but differed significantly in potency. Similar toprevious studies on rat thymocytes, the relative potencies of theglucocorticoids were found to be: prednylidene (1.7)<dexamethasone(1.5)<methylprednisolone (1.0)<prednisolone (0.3)<betamethasone(>0.2). Given their rapidity of onset, these effects must benongenomically mediated. The differences between the relative potencies ofthe various glucocorticoids for these effects and those for the classicalgenomic effects have important clinical implications, in particular forhigh-dose systemic and local glucocorticoid therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

REFERENCES

  1. Brod, S. A., Nelson, L. D., Khan, M., and Wolinsky, J. S. (1997) Int. J. Neurosci. 90:135–144.

    Google Scholar 

  2. Buttgereit, F., Brand, M. D., and Burmester, G. D. (1999) Biochem. Pharm. 58:363–368.

    Google Scholar 

  3. Buttgereit, F., Brand, M. D., and Mu¨ ller, M. (1992) Biosc. Rep. 12:381–386.

    Google Scholar 

  4. Buttgereit, F., Brand, M. D., and Mu¨ ller, M. (1993) Biosc. Rep. 13:41–52.

    Google Scholar 

  5. Buttgereit, F. and Brand, M. D. (1995) Biochem. J. 312:163–167.

    Google Scholar 

  6. Buttgereit, F., Burmester, G. R., and Brand, M. D. (2000a) Immunology Today 21:189–196.

    Google Scholar 

  7. Buttgereit, F., Burmester, G. R., and Brand, M. D. (2000b) Biochem. Pharmacol. 59:597–603.

    Google Scholar 

  8. Buttgereit, F., Grant, A., Mu¨ ller, M., and Brand, M. D. (1994) Eur. J. Biochem. 223:513–519.

    Google Scholar 

  9. Buttgereit, F., Krauss, S., and Brand, M. D. (1997) Biochem. J. 236:329–332.

    Google Scholar 

  10. Buttgereit, F., Wehling, M., and Burmester, G. R. (1998) Arthritis Rheum. 41:761–767.

    Google Scholar 

  11. Cahalan, M. D. and Chandy, K. G. (1997) Curr. Opin. Biotechnol. 8:749–756.

    Google Scholar 

  12. Crabtree, G. R. and Clipstone, N. A. (1994) Annu. Reû. Biochem. 63:1045–1083.

    Google Scholar 

  13. Derendorf, H., Mollmann, H., Rohdewald, P., Rehder, J., and Schmidt, E. W. (1985) Clin. Pharmacol. Ther. 37:502–507.

    Google Scholar 

  14. Grinstein, S. and Dixon, S. J. (1989) Physiol. Reû. 69:417–481.

    Google Scholar 

  15. Grove, D. S. and Mastro, A. M. (1989) J. Cell Physiol. 138:561–567.

    Google Scholar 

  16. Hardman, J. G., Goodman Gilman, A., and Limbrid, L. E. (1996) The pharmacological basis of therapeutics (9th edition). New York: McGraw-Hill.

    Google Scholar 

  17. Kaiser, H. and Kley, H. K. (1997) Cortisontherapie—Corticoid in Therapie und Praxis. Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  18. Karlsson, H., De Pierre, J. W., and Nassberger, L. (1979) Biochim. Biophys. Acta 1319:301–310.

    Google Scholar 

  19. Kosonen, O., Kankaanranta, H., Vuorinen, P., and Moilanen, E. (1997) Eur. J. Pharmacol. 337:55–61.

    Google Scholar 

  20. Krauss, S., Buttgereit, F., and Brand, M. D. (1999) Biochim. Biophys. Acta 1412:129–138.

    Google Scholar 

  21. Lewis, R. S. and Cahalan, M. D. (1995) Annu. Re. Immunol. 13:623–653.

    Google Scholar 

  22. Lijnen, P., Saavedra, A., and Petrov, V. (1997) Clin. Chim. Acta 264:91–101.

    Google Scholar 

  23. Martens, M. E., Peterson, P. L., and Lee, C. P. (1991) Biochim. Biophys. Acta 1058:152–160.

    Google Scholar 

  24. Meskini, N., Hosni, M., Nemoz, G., Lagarde, M., and Prigent, A. F. (1992) J. Cell Physiol. 150:140–148.

    Google Scholar 

  25. Rolfe, D. F. and Brown, G. C. (1997) Physiol. Reû. 77:731–758.

    Google Scholar 

  26. Santos, K. D., Rocha, M., Wannmacher, C. M., and Wajner, M. (1996) Int. J. Immunopharmacol. 18:761–769.

    Google Scholar 

  27. Seligmann, B. (1990) In: Current Topics in Membranes and Transport. Mechanisms of Leukocyte Actiûation (A. Kleinzeller, S. Grinstein, and O. Rothstein, eds.), New York, Academic Press, pp. 103–125.

    Google Scholar 

  28. Zempleni, J. and Mock, D. M. (1999) Am. J. Physiol. 276:C1079–1084.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmid, D., Burmester, GR., Tripmacher, R. et al. Bioenergetics of Human Peripheral Blood Mononuclear Cell Metabolism in Quiescent, Activated, and Glucocorticoid-Treated States. Biosci Rep 20, 289–302 (2000). https://doi.org/10.1023/A:1026445108136

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026445108136

Navigation