Skip to main content
Log in

Beyond Storage Capacity in a Single Model Neuron: Continuous Replica Symmetry Breaking

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A single McCulloch–Pitts neuron, that is, the simple perceptron is studied, with focus on the region beyond storage capacity. It is shown that Parisi's hierarchical ansatz for the overlap matrix of the synaptic couplings with so called continuous replica symmetry breaking is a solution, and as we propose it is the exact one, to the equilibrium problem. We describe some of the most salient features of the theory and give results about the low temperature region. In particular, the basics of the Parisi technique and the way to calculate thermodynamical expectation values is explained. We have numerically extremized the replica free energy functional for some parameter settings, and thus obtained the order parameter function, i.e., the probability distribution of overlaps. That enabled us to evaluate the probability density of the local stability parameter. We also performed a simulation and found a local stability density closer to the theoretical curve than previous numerical results were.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. J. J. Hopfield, Proc. Natl. Acad. Sci. USA 79:2554 (1982).

    Google Scholar 

  2. W. A. Little, Math. Biosci. 19:101 (1974).

    Google Scholar 

  3. W. S. McCulloch and W. Pitts, Bull. Mathem. Biophys. 5:115 (1943).

    Google Scholar 

  4. E. Gardner, J. Phys. A 21:257 (1988).

    Google Scholar 

  5. J. Hertz, A. Krogh, and R. G. Palmer, Introduction to the Theory of Neural Computation (Addison-Wesley, Reading, MA, 1991).

    Google Scholar 

  6. M. Mézard, G. Parisi, and M. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).

    Google Scholar 

  7. K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, UK, 1991).

    Google Scholar 

  8. F. Rosenblatt, Principles of Neurodynamics (Spartan, New York, 1962).

    Google Scholar 

  9. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, Nature 323:533 (1986).

    Google Scholar 

  10. T. L. H. Watkin, A. Rau, and M. Biehl, Rev. Mod. Phys. 65:499 (1993).

    Google Scholar 

  11. S. Amari, Neural Computation 10:251 (1998).

    Google Scholar 

  12. E. Gardner and B. Derrida, J. Phys. A 21:271 (1988).

    Google Scholar 

  13. M. L. Minsky and S. A. Papert, Perceptrons (MIT Press, Cambridge, MA, 1969).

    Google Scholar 

  14. M. Biehl and N. Caticha, in The Handbook of Brain Theory and Neural Networks, 2nd edn., M. A. Arbib, ed. (MIT Press, Cambridge, MA, 1999).

    Google Scholar 

  15. D. Malzahn, A. Engel, and I. Kanter, Phys. Rev. E 55:7369 (1997).

    Google Scholar 

  16. B. Schottky, J. Phys. A 28:4515 (1995).

    Google Scholar 

  17. A. H. L. West and D. Saad, J. Phys. A 31:8977 (1998).

    Google Scholar 

  18. O. Winther, B. Lautrup, and J.-B. Zhang, Phys. Rev. E 55:836 (1997).

    Google Scholar 

  19. W. Whyte and D. Sherrington, J. Phys. A 29:3063 (1996).

    Google Scholar 

  20. M. Opper and W. Kinzel, in Models of Neural Networks, Vol. III, E. Domany, J. L. van Hemmen, and K. Schulten, eds. (Springer-Verlag, New York, 1996).

    Google Scholar 

  21. G. Györgyi and N. Tishby, Statistical mechanics of learning a rule, in Proceedings of the STATPHYS-17 Workshop on Neural Networks and Spin Glasses, W. K. Theumann and R. Köberle, eds. (Singapore-Teaneck, NJ-Hongkong, 1990, World Scientific).

    Google Scholar 

  22. P. Majer, A. Engel, and A. Zippelius, J. Phys. A 26:7405 (1993).

    Google Scholar 

  23. R. Erichsen and W. K. Theumann, J. Phys. A 26:L61 (1993).

    Google Scholar 

  24. G. Györgyi and P. Reimann, Phys. Rev. Lett. 79:2746 (1997).

    Google Scholar 

  25. M. Griniasty and H. Gutfreund, J. Phys. A 24:715 (1991).

    Google Scholar 

  26. M. Aizenman, J. L. Lebowitz, and D. Ruelle, Comm. Math. Phys. 112:3 (1987).

    Google Scholar 

  27. G. Györgyi, Phys. Rep., to be published.

  28. M. Bouten, J. Phys. A 27:6021 (1994).

    Google Scholar 

  29. G. Parisi, J. Phys. A 13:L115 (1980).

    Google Scholar 

  30. J. R. L. de Almeida and E. J. S. Lage, J. Phys. C 16:939 (1983).

    Google Scholar 

  31. H.-J. Sommers and W. Dupont, J. Phys. C 17:5785 (1984).

    Google Scholar 

  32. H. Sompolinsky and A. Zippelius, Phys. Rev. Lett. 47:935 (1981).

    Google Scholar 

  33. M. Mézard and M. A. Virasoro, J. Phys. France 46:1293 (1985).

    Google Scholar 

  34. T. Temesvári, C. De Dominicis, and I. Kondor, J. Phys. A 27:7569 (1994).

    Google Scholar 

  35. C. De Dominicis, T. Temesvári, and I. Kondor, J. Phys. IV France 8:Pr6-13 (1998).

    Google Scholar 

  36. Th. M. Nieuwenhuizen, Phys. Rev. Lett. 74:4289 (1995).

    Google Scholar 

  37. A. Engel has pointed out this fact to us.

  38. A. Wendemuth, J. Phys. A 28:5423 (1995).

    Google Scholar 

  39. A. Wendemuth, J. Phys. A 28:5485 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Györgyi, G., Reimann, P. Beyond Storage Capacity in a Single Model Neuron: Continuous Replica Symmetry Breaking. Journal of Statistical Physics 101, 679–702 (2000). https://doi.org/10.1023/A:1026441500710

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026441500710

Navigation