Skip to main content
Log in

Synthesis of oligosaccharides by bacterial enzymes

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Many human pathogens initiate disease by utilizing their microbial adhesin proteins to attach to glycoconjugates on host cell mucosal surfaces. Soluble oligosaccharides of identical or similar structure to these naturally occurring ligands can both prevent bacterial attachment as well as mediate the release of attached bacteria. Since it has not been possible to isolate large quantities of these compounds, we have developed enzyme-based technologies to synthesize several relevant human oligosaccharides. Using cloned bacterial glycosyltransferases, we can synthesize several hundred grams of these oligosaccharides at a time. The availability of these large quantities will allow these compounds to be tested as anti-adhesive pharmaceutical agents as well as lead to expanded practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kunz C, Rudloff S (1993) Acta Pediatr 82: 903–12.

    Google Scholar 

  2. Ofek I, Doyle RJ (1994) Bacterial Adhesion to Cells and Tissues New York: Chapman Hall.

    Google Scholar 

  3. Barthelson R, Mobasseri A, Zopf D, Simon P (1998) Infect and Immun 66: 1439–44.

    Google Scholar 

  4. Simon PM, Goode PL, Mobasseri A, Zopf D (1997) Infect and Immun 65: 750–57.

    Google Scholar 

  5. Appelmelk BJ, Simoons-Smit I, Negrini R, Moran AP, Aspinall GO, Forte JG, DeVries T, Quan H, Verboom T, Maaskant JJ, Ghiara P, Kuipers EJ, Bloemena E, Tadema TM, Townsend RR, Tyagarajan K, Crothers JM, Monteiro MA, Savio A, De Graaff J (1996) Infect and Immun 64: 2031–40.

    Google Scholar 

  6. Monteiro MA, Chan KHN, Rasko DA, Taylor DE, Zheng PY, Appelmelk BJ, Wirth HP, Yang M, Blaser MJ, Hynes SO, Moran AP, Perry MB (1998) J Biol Chem 273: 11533–43.

    Google Scholar 

  7. Smith H, Parsons NJ, Cole JA (1995) Microb Patho. 19: 365–77.

    Google Scholar 

  8. Rest R, and Mandrell RE (1995) Microb Pathog 19: 379–90.

    Google Scholar 

  9. Estabrook MM, McLeod Griffiss J, Jarvis GA (1997) Infect and Immun 65: 4436–44.

    Google Scholar 

  10. Gotschlich EC (1994) J Exp Med 180: 2181–90.

    Google Scholar 

  11. Jennings MP, Hood DW, Peak IRA, Virji M, Moxon ER (1995) Molec Microb 18: 729–40.

    Google Scholar 

  12. Kolkman MAB, Wakarchuk W, Nuijten PJM, van der Zeist BAM (1997) Molec Microbiol 26: 197–208.

    Google Scholar 

  13. Kolkman MAB, van der Zeist BAM, Nuijten PJM (1997) J Biol Chem 272: 19502–508.

    Google Scholar 

  14. Kukowska-Latallo JF, Larsen RD, Nair RP, Lowe JB (1990) Genes Dev 4: 1288–303.

    Google Scholar 

  15. Cameron HS, Szczepaniak D, Weston BW (1995) J Biol Chem 270: 20112–122.

    Google Scholar 

  16. Lowe JB, Kukowska-Latallo JF, Nair RP, Larsen RD, Marks RM, Macher BA, Kelly RJ, Ernst LK (1991) J Biol Chem 266: 17467–77.

    Google Scholar 

  17. Goelz SE, Hession C, Goff D, Griffiths B, Tizard R, Newman B, Chi-Rosso G, Lobb R (1990) Cell 63: 1349–56.

    Google Scholar 

  18. Kumar R, Potvin B, Muller WA, Stanley P (1991) J Biol Chem 266: 21777–783.

    Google Scholar 

  19. Weston BW, Nair RP, Larsen RD, Lowe JB (1992) J Biol Chem 267: 4152–60.

    Google Scholar 

  20. Koszdin KL, Bowen BR (1992) Biochem Biophys Res Commun 187: 152–57.

    Google Scholar 

  21. Weston BW, Smith PL, Kelly RJ, Lowe JB (1992) J Biol Chem 267: 24575–84.

    Google Scholar 

  22. Natsuka S, Gersten KM, Zenita K, Kannagi R, Lowe JB (1994) J Biol Chem 269: 16789–94.

    Google Scholar 

  23. Sasaki K, Kurata K, Funayama K, Nagata M, Watanabe E, Ohta S, Hanai N, Nishi T (1994) J Biol Chem 269: 14730–37.

    Google Scholar 

  24. Ozawa M, Muramatsu T (1996) J Biochem (Tokyo) 119: 302–8.

    Google Scholar 

  25. Gersten KM, Natsuka S, Trinchera M, Petryniak B, Kelly RJ, Hiraiwa N, Jenkins NA, Gilbert DJ, Copeland NG, Lowe JB (1995) J Biol Chem 270: 25047–56.

    Google Scholar 

  26. Smith PL, Gersten KM, Petryniak B, Kelly RJ, Rogers C, Natsuka Y, Alford JA, Scheidegger EP, Natsuka S, Lowe JB (1996) J Biol Chem 271: 8250–59.

    Google Scholar 

  27. Sajdel-Sulkowska EM, Smith FI, Wiederschain G, McCluer RH (1997) Glycoconj J 14: 249–58.

    Google Scholar 

  28. Oulmouden A, Wierinckx A, Petit JM, Costache M, Palcic MM, Mollicone R, Oriol R, Julien R (1997) J Biol Chem 272: 8764–73.

    Google Scholar 

  29. Lee KP, Carlson LM, Woodcock JB, Ramachandra N, Schultz TL, Davis TA, Lowe JB, Thompson CB, Larsen RD (1996) J Biol Chem 271: 32960–67.

    Google Scholar 

  30. Martin SL, Edbrooke MR, Hodgeman TC, van den Eijden DH, Bird MI (1997) J Biol Chem 272: 21349–56.

    Google Scholar 

  31. Ge Z, Chan NWC, Palcic MM, Taylor DE (1997) J Biol Chem 272: 21357–63.

    Google Scholar 

  32. Kelm S, Schauer R (1997) Intnl Rev Cytol 175: 137–240.

    Google Scholar 

  33. Weisberger C, Hansen A, Frosch M (1991) Glycobiol 1: 357–65

    Google Scholar 

  34. Frosch M, Weisberger C, Meyer JF (1989) Proc Natl Acad Sci USA 86: 1669–73.

    Google Scholar 

  35. Frosch M, Edwards U, Bousset K, Krause B, Weisberger C (1991) Mol Microbiol 5: 1251–63.

    Google Scholar 

  36. Edwards U, Muller A, Hammerschmidt S, Gerardy-Schahn R, Frosch M (1994) Mol Microbiol 8: 483–93.

    Google Scholar 

  37. Rougon G (1993) Eur J Cell Biol 61: 197–207.

    Google Scholar 

  38. Nara K, Watanabe Y, Maruyama K, Kasahara K, Wagai Y, Sanai Y (1994) Proc Natl Acad Sci USA 91: 7952–56.

    Google Scholar 

  39. Haraguchi M, Yamashiro S, Yamamoto A, Furukawa K, Takamiya K, Lloyd KO, Shiku H, Furukawa K (1994) Natl Acad Sci USA 91: 10455–59.

    Google Scholar 

  40. Sasaki K, Kurata K, Kojima N, Kurosawa N, Ohta S, Hanai N, Tsuji S, Nishi T (1994) J Biol Chem 269: 15950–56.

    Google Scholar 

  41. Gilbert M, Watson DC, Cunningham AM, Jennings MP, Young NM, Wakarchuk WW (1996) J Biol Chem 271: 28271–76.

    Google Scholar 

  42. Kitagawa H, Paulson JC (1994) J Biol Chem 269: 1394–401.

    Google Scholar 

  43. Gilbert M, Cunningham AM, Watson DC, Martin A, Richards JC, Wakarchuk WW (1997) Eur J Biochem 249: 187–94.

    Google Scholar 

  44. Yamamoto T, Nakashizuka M, Terada I (1998) J Biochem (Tokyo) 123: 94–100.

    Google Scholar 

  45. Weinstein J, Lee EU, McEntee K, Lai PH, Paulson JC (1987) J Biol Chem 262: 17735–43.

    Google Scholar 

  46. Kurosawa N, Hamamoto T, Lee YC, Nakaoka T, Kojima N, Tsuji S (1994) J Biol Chem 269: 19048–53.

    Google Scholar 

  47. Kajihara Y, Yamamoto T, Nagae H, Nakashizuka M, Sakakibara T, Terada I (1996) J Org Chem 61: 8632–35.

    Google Scholar 

  48. Fang J, Li J, Chen X, Zhang Y, Wang J, Guo Z, Brew K, Wang PG (1998) J Am Chem Soc (in press).

  49. Brodbeck U, Dento WL, Tanahashi N, Ebner KE (1967) J Biol Chem 242: 1391–97.

    Google Scholar 

  50. Hill RL, Brew K (1975) Adv Enzymol Relat Areas Mol Biol 43: 411–90.

    Google Scholar 

  51. Shaper JH, Shaper NL (1992) Curr Opin Struct Biol 2: 701–9.

    Google Scholar 

  52. Do KY, Do SI, Cummings RC (1995) J Biol Chem 270: 18447–51.

    Google Scholar 

  53. Parodi AJ, Pollevick GD, Mautner M, Buschiazzo A, Sanchez DO, Frasch CC(1992) EMBO J 11: 1705–10.

    Google Scholar 

  54. Watkins W (1980) Advances in Human Genetics pp 1–137, NewYork: Plenum Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Johnson, K.F. Synthesis of oligosaccharides by bacterial enzymes. Glycoconj J 16, 141–146 (1999). https://doi.org/10.1023/A:1026440509859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026440509859

Navigation