Skip to main content
Log in

Filamentous fungi as production organisms for glycoproteins of bio-medical interest

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20–40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but research is in progress to increase the production levels. In the past years the structure of protein-linked carbohydrates of a number of fungal proteins has been elucidated, showing the presence of oligo-mannosidic and high-mannose chains, sometimes with typical fungal modifications. A start has been made to engineer the glycosylation pathway in filamentous fungi to obtain strains that show a more mammalian-like type of glycosylation. This mini review aims to cover the current knowledge of glycosylation in filamentous fungi, and to show the possibilities to produce glycoproteins with these organisms with a more mammalian-like type of glycosylation for research purposes or pharmaceutical applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Varki A (1993) Glycobiology 3: 97–130.

    Google Scholar 

  2. Cumming DA (1991) Glycobiology 1: 115–30.

    Google Scholar 

  3. Olijve W, de Boer W, Mulders JW, Van Wezenbeek PM (1996) Mol Human Reprod 2: 371–82.

    Google Scholar 

  4. Sasaki H, Bothner B, Dell A, Fukuda M (1987) J Biol Chem 262: pp 12059–76.

  5. Altmann F (1997) Glycoconj J 14: 643–46.

    Google Scholar 

  6. Hsu TA, Takahashi N, Tsukamoto Y, Kato K, Shimada I, Masuda K, Whiteley EM, Fan JQ, Lee YC, Betenbaugh MJ (1997) J Biol Chem 272: 9062–70.

    Google Scholar 

  7. Davidson DJ, Castellino FJ (1991) Biochemistry 30: 6167–74.

    Google Scholar 

  8. Davidson DJ, Castellino FJ (1991) Biochemistry 30: 6689–96.

    Google Scholar 

  9. Davidson DJ, Fraser MJ, Castellino FJ (1990) Biochemistry 29: pp5584–90.

    Google Scholar 

  10. Tucker GA, Woods LFJ, eds (1995) Enzymes in Food Processing (2nd ed). London: Blackie.

    Google Scholar 

  11. Finkelstein DB, Rambosek J, Crawford MS, Soliday CL, Mc Ada PC, Leach J (1989) In Genetics and Molecular Biology of Industrial Microorganisms (Hershberger Cl, Queener SW, Hegemann G, eds) pp 295–300 Washington DC: American Society for Microbiology

    Google Scholar 

  12. Verdoes, JC, Punt PJ, Van den Hondel CAMJJ (1995) Appl Microbiol Biotechnol 43: 195–205.

    Google Scholar 

  13. Jeenes DJ, Mackenzie DA, Roberts IN, Archer DB (1991) Biotechn Genet Eng Rev 9: 327–67.

    Google Scholar 

  14. Van den Hondel CAMJJ, Punt PJ, van Gorcom RFM (1991) In More Gene Manipulation in Fungi (Bennett JW, Lasure LL, eds), p 396. New York: Academic Press.

    Google Scholar 

  15. Gwynne DJ, Devchand M (1992). In Aspergillus, the Biology and Industrial Application (Bennet JW, Klich MA, eds) pp 203–14. London: Butterworth.

    Google Scholar 

  16. Gouka RJ, Punt PJ, Van den Hondel CAMJJ (1997) Appl and Environmental Microbiol 63: 488–97.

    Google Scholar 

  17. Gouka RJ, Punt PJ, Hessing JGM, Van den Hondel CAMJJ (1996). Appl Environ Microbiol 62: 195–205.

    Google Scholar 

  18. Nyyssonen E, Keranen S (1995) Curr Genet 28: 71–9.

    Google Scholar 

  19. Gouka RJ, Punt PJ, Van den Hondel CAMJJ (1997) Appl Microbiol Biotechnol 47: 1–11.

    Google Scholar 

  20. Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, Van den Hondel CAMJJ (1993) J Biotech 31: 135–45.

    Google Scholar 

  21. Van Hartingsveldt W, Van Zeijl CMJ, Veenstra AE, Van den Berg JA, Pouwels PH, Van Gorcom RFM, Van den Hondel CAMJJ (1990) In Proceedings of 6th International Symposium on Genetics of Industrial Microorganisms (Heslot H, Davies J, Florent J, Bibichon L, Durant G, Penasse L, eds), p 107, Société Française de Microbiologie.

  22. Roberts IN, Jeenes DJ, MacKenzie DA, Wilkinson AP, Summer IG, Archer DB (1992) Gene 122: 155–61.

    Google Scholar 

  23. Archer DB, Peberdy JF (1997) Crit Rev Biotechn 17: 273–306.

    Google Scholar 

  24. Dunn-Coleman NS, Bloebaum P, Berka RM, Bodie E, Robinson N, Armstrong G, Ward M, Przetak M, Carter GL, LaCost R, Wilson Lj, Kodama KH, Baliu EF, Bower B, Lamsa M, Heinsohn H (1991) Biotechnology 9: 976–81.

    Google Scholar 

  25. Ward PP, Piddington CS, Cunningham GA, Zhou X, Wyatt RD, Conneely OM (1995) Biotechnology 13: 498–503.

    Google Scholar 

  26. Civas A, Eberhard R, Le Dizet P, Petek F (1984) Biochem J 219: pp857–63.

    Google Scholar 

  27. Kobata A, Amano J (1987) Meth Enzymol 138: 779–85.

    Google Scholar 

  28. Gaikwad SM, Keskar SS, Khan MI (1995) Biochim Biophys Acta 1250: 144–48.

    Google Scholar 

  29. Eades CJ, Gilbert A, Goodman CD, Hintz WE (1998) Glycobiology 8: 17–33.

    Google Scholar 

  30. Luonteri E, Tenkanen M, Viikari L (1998) Enzyme Microb Technol 22: 192–98.

    Google Scholar 

  31. Eneyskaya EV, Kulminskaya AA, Savel'ev AN, Shabalin KA, Golubev AM, Neustroev KN (1998) Biochem Biophys Res Commun 245: 43–9.

    Google Scholar 

  32. Palamarczyk G, Maras M, Contreras R and Kruzewska J (1998) In Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications (Harman GE, Kubicek CP, eds) vol. 1, pp 121–33. London: Taylor and Francis Ltd

    Google Scholar 

  33. Aleshin AE, Hoffman C, Firsov LM, Honzatko RB (1994) J Mol Biol 238: 575–91.

    Google Scholar 

  34. Yoshida T, Ichishima E (1995) Biochim Biophys Acta 1263: pp159–162.

    Google Scholar 

  35. Inoue T, Yoshida T, Ichishima E (1995) Biochim Biophys Acta 1253: 141–45.

    Google Scholar 

  36. Goto M, Ekino K, Furukawa K (1997) Appl Envir Microbiol 63: pp2940–43.

    Google Scholar 

  37. Devchand M, Gwynne DI (1991) J Biotechnology 17: 3–10.

    Google Scholar 

  38. Ftouhi-Paquin N, Hauer CR, Stack RF, Tarentino AL, Plummer TH Jr (1997) J Biol Chem 272: 22960–65.

    Google Scholar 

  39. Klarskov K, Piens K, Stahlberg J, Hoj PB, Beeumen JV, Claeyssens M (1997) Carbohydr Res 304: 143–54.

    Google Scholar 

  40. Harrison MJ, Nouwens AS, Jardine DR, Zachara NE, Gooley AA, Nevalainen H, Packer NH (1998) Eur J Biochem 256: pp119–27.

    Google Scholar 

  41. Silberstein S, Gilmore R (1996) FASEB J 10: 849–58.

    Google Scholar 

  42. Nakao Y, Kozutsumi Y, Funakoshi I, Kawasaki T, Yamashina I, Mutsaers JHGM, Van Halbeek H, Vliegenthart JFG (1987) J Biochem 102: 171–79.

    Google Scholar 

  43. Maras M, De Bruyn A, Schraml J, Herdewijn P, Claeyssens M, Fiers W, Contreras R (1997) Eur J Biochem 245: 617–25.

    Google Scholar 

  44. De Bruyn A, Maras M, Schraml J, Herdewijn P, Contreras R (1997) FEBS Lett 405: 111–13.

    Google Scholar 

  45. Hashimoto C, Cohen RE, Zhang WJ, Ballou CE (1981) Proc Natl Acad Sci USA 78: 2244–48.

    Google Scholar 

  46. Hernandez LM, Ballou L, Alvarado E, Tsai P, Ballou CE (1989) J Biol Chem 264: 13648–59.

    Google Scholar 

  47. Ballou L, Hernandez LM, Alvarado E, Ballou CE (1990) Proc Natl Acad Sci USA 87: 3368–72.

    Google Scholar 

  48. Hernandez LM, Olivero I, Alvarado E, Larriba G (1992) Biochemistry 31: 9823–31.

    Google Scholar 

  49. Jars MU, Osborn S, Forstrom J, MacKay VL (1995) J Biol Chem 270: 24810–17.

    Google Scholar 

  50. Takayanagi T, Kushida K, Idonuma K, Ajisaka K (1992) Glycoconj J 9: 229–34.

    Google Scholar 

  51. Takayanagi T, Kimura A, Chiba S, Ajisaka K (1994) Carbohydrate Res 256: 149–58.

    Google Scholar 

  52. Groisman JF, de Lederkremer RM (1987) Eur J Biochem 165: pp327–32.

    Google Scholar 

  53. Ohta M, Emi S, Iwamoto H, Hirose J, Hiromi K, Itoh H, Shin T, Murao S, Matsuura F (1996) Biosci Biotech Biochem 60: 1123–30.

    Google Scholar 

  54. Goto M, Kuwano E, Kanlayakrit W, Hayashida S (1995) Biosci Biotechnol Biochem 1: 16–20.

    Google Scholar 

  55. Chen J, Saxton J, Hemming FW, Peberdy JF (1996) Biochim Biophys Acta 1296: 207–18.

    Google Scholar 

  56. Takegawa K, Kondo A, Iwamoto H, Fujiwara K, Hosokawa Y, Kato I, Hiromi K, Iwahara S (1991) Biochem Int 25: 181–90.

    Google Scholar 

  57. Yang Y, Bergmann C, Benen J, Orlando R (1997) Rapid Comm Mass Spectr 11: 1257–62.

    Google Scholar 

  58. Panchal T, Wodzinski RJ (1998) Prep Biochem Biotech 28: 201–7.

    Google Scholar 

  59. Salovuori I, Makarow M, Rauvala H, Knowles J, Kssrisinen L (1987) Biotechnology 5: 152–56.

    Google Scholar 

  60. Goochee CF, Monica T (1990) Biotechnology 8: 421–27.

    Google Scholar 

  61. Gum EK Jr, Brown RD Jr (1976) Biochim Biophys Acta 446:<nt> </nt>371–86.

    Google Scholar 

  62. Gunnarsson A, Svensson B, Nilsson B, Svensson S (1984) Eur J Biochem 145: 463–67.

    Google Scholar 

  63. Goto M, Kuwano E, Kanlayakrit W, Hayashida S (1995) Biosci Biotech Biochem 59: 16–20.

    Google Scholar 

  64. Murakami K, Takeuchi K, Beppu T, Horinouchi S (1998) Microbiology 144: 1369–74.

    Google Scholar 

  65. Murakami K, Aikawa J, Horinouchi S, Beppu T (1993) Mol Gen Genet 241: 312–18.

    Google Scholar 

  66. Chiba Y, Yamagata Y, Iijima S, Nakajima T, Ichishima E (1993) Curr Microbiol 27: 281–88.

    Google Scholar 

  67. Morkeberg R, Carlsen M, Nielsen J (1995) Microbiology 141: pp2449–54.

    Google Scholar 

  68. Jarvis DL, Summers MD (1989) Mol Cell Biol 9: 214–23.

    Google Scholar 

  69. Neustroev KN, Golubev AM, Firsov LM, Ibatullin FM, Protasevich II, Makarov AA (1993) FEBS Lett 316: 157–60.

    Google Scholar 

  70. Opdenakker G, Rudd PM, Ponting CP, Dwek RA (1993) FASEB J 7: 1330–37.

    Google Scholar 

  71. Wang C, Eufemi M, Turano C, Giartosio A (1996) Biochemistry 35: 7299–307.

    Google Scholar 

  72. Jenkins N, Parekh RB, James DC (1996) Nature Biotechnology 14: 975–81.

    Google Scholar 

  73. Maras M, Saelens X, Laroy W, Piens K, Claeyssens M, Fiers W, Contreras R (1997) Eur J Biochem 249: 701–7.

    Google Scholar 

  74. Vella GJ, Paulsen H, Schachter H (1983) Can J Biochem Cell Biol 62: 409–17.

    Google Scholar 

  75. Kalsner I, Hintz W, Reid LS, Schachter H (1995) Glycoconjugate J 12: 360–70.

    Google Scholar 

  76. Herscovics A, Orlean P (1993) FASEB J 7: 540–50.

    Google Scholar 

  77. Kruszewska J, Kubicek CP, Palamarczyk G (1994) Acta Biochim Pol 41: 331–37.

    Google Scholar 

  78. Zimmerman JW, Specht CA, Xoconostle Cazares B, Robbins PW (1996) Yeast 12: 765–71.

    Google Scholar 

  79. Kruszewska JS, Saloheimo M, Penttila M, Palamarczyk G (1998) Curr Genet 33: 445–50.

    Google Scholar 

  80. Ashwell G, Harford J (1982) Annu Rev Biochem 51: 531–54.

    Google Scholar 

  81. Berg EL, Robinson MK, Mansson O, Butcher EC, Magnani JL (1991) J Biol Chem 266: 14869–72.

    Google Scholar 

  82. Nyyssonen E, Penttila M, Harkki A, Saloheimo A, Knowles JK, Keranen S (1993) Biotechnology 11: 591–95.

    Google Scholar 

  83. Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT (1998) Res Immunol 149: 589–99.

    Google Scholar 

  84. Honda G, Matsuda A, Zushi M, Yamamoto S, Komatsu K (1997) Biosci Biotech Biochem 61: 948–55.

    Google Scholar 

  85. Yamaguchi H, Ikenaka T, Matsushima Y (1971) J Biochem 70: pp587–94.

    Google Scholar 

  86. Limongi P, Kjalke M, Vind J, Tams JW, Johansson T, Welinder, KG (1995) Eur J Biochem 227: 270–76.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maras, M., van Die, I., Contreras, R. et al. Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 16, 99–107 (1999). https://doi.org/10.1023/A:1026436424881

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026436424881

Navigation