Skip to main content
Log in

Preparation and Ultrafast Optical Characterization of Metal and Semiconductor Colloidal Nano-Particles

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The ultrafast dynamics of photoinduced electrons in several metal and semiconductor colloidal nano-particle systems are characterized using femtosecond laser spectroscopy. Various preparation methods are used and, in several cases, modified for making particles with long-term stability and narrow and controllable size distributions. The particle size and size distribution are determined using transmission electron microscopy and electronic absorption spectroscopy. For aqueous gold and silver colloids, spatial size confinement is found to cause substantially slower electronic relaxation due to reduction of non-equilibrium electron transport and weaker electron-phonon coupling. In gold colloids, photoejection of electrons into the liquid is observed, which is attributed to a two-photon enhanced ionization process. The effect of surfactant on the electron dynamics in CdS colloids is examined and found to be significant, substantiating the notion that electrons are dominantly trapped at the liquid-solid interface. In Ru3+-doped TiO2 colloids, the electronic decay is found to be as fast as or even faster than in undoped TiO2 and other semiconductor colloids such as CdS, suggesting that ion doping of large bandgap semiconductor colloids is not necessarily effective in lengthening the electron lifetime. In almost all cases studied, the majority of the photoinduced electrons are found to decay within a few tens of picoseconds due to non-radiative relaxation. The results are discussed in the context of the potential applications of metal and semiconductor nano-particles in areas including photocatalysis and photoelectrochemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Henglein, J. Phys. Chem. 97, 5457-5469 (1993).

    Google Scholar 

  2. W.P. Halperin, Rev. Mod. Phys. 58, 533 (1986).

    Article  Google Scholar 

  3. P.V. Kamat, Prog. React. Kinet. 19, 277 (1994).

    Google Scholar 

  4. M.L. Steigerwald and L.E. Brus, Acc. Chem. Rec. 23, 183 (1990).

    Google Scholar 

  5. M. Gratzel, Heterogeneous Photochemical Electron Transfer (CRC Press, Boca Raton, 1989), p. 87.

    Google Scholar 

  6. M.A. Fox and M.T. Dulay, Chem. Rev. 93, 341 (1993).

    Google Scholar 

  7. N. Serpone and E. Pelizzetti (eds.), Photocatalysis, Fundamentals and Applications (Wiley, New York, 1989).

    Google Scholar 

  8. K. Kalyanasundaram, Photochemistry in Microheterogeneous Systems (Academic Press, New York, 1987).

    Google Scholar 

  9. J.M. Lanzafame, S. Palese, D. Wang, R.J.D. Miller, and A.A. Muenter, J. Phys. Chem. 98, 11020 (1994).

    Google Scholar 

  10. G.L. Richmond, J.M. Robinson, and V.L. Shannon, Prog. Surf. Sci. 28, 1 (1988).

    Article  Google Scholar 

  11. R. Guidelli (ed.), Electrified Interfaces in Physics, Chemistry and Biology (Kluwer Academic Publishers, Boston, 1992).

    Google Scholar 

  12. R.M. Corn and D.A. Higgins, Chem. Rev. 94, 107 (1994).

    Google Scholar 

  13. T. Linnert, P. Mulvaney, A. Henglein, and H. Weller, J. Am. Chem. Soc. 112, 4657 (1990).

    Google Scholar 

  14. Y. Rosenwaks, B.R. Thacker, A.J. Nozik, Y. Shapira, and D. Huppert, J. Phys. Chem. 97, 10421 (1993).

    Google Scholar 

  15. L.M. Peter, Chem Rev. 90, 753 (1990).

    Google Scholar 

  16. C.A. Koval and J.N. Howard, Chem. Rev. 92, 411 (1992).

    Google Scholar 

  17. T.W. Roberti, B.A. Smith, and J.Z. Zhang, J. Chem. Phys. 102, 3860 (1995).

    Article  Google Scholar 

  18. J.Z. Zhang, R.H. O'Neil, and T.W. Roberti, J. Phys. Chem. 98, 3859 (1994).

    Google Scholar 

  19. D.P. Columb, Jr., K.A. Roussel, J. Saeh, D.E. Skinner, J.J. Caveleri, and R.M. Bowman, Chem. Phys. Lett. 232, 210 (1995).

    Google Scholar 

  20. W. Choi, A. Termin, and M.R. Hoffman, J. Phys. Chem. 98, 13669 (1994).

    Google Scholar 

  21. G. Rothenberger, J. Moser, M. Gratzel, N. Serpone, and D.K. Sharma, J. Am. Chem. Soc. 107, 8054 (1985).

    Google Scholar 

  22. N.P. Ernsting, M. Kaschke, H. Weller, and L. Katsikas, J. Opt. Soc. Am. B 7, 1630 (1990).

    Google Scholar 

  23. (a) A.E. Faulhaber, B.A. Smith, J.K. Andersen, and J.Z. Zhang, Mole. Cryst. Liquid Cryst. (1995), (in press); (b) J.Z. Zhang, B.A. Smith, A.E. Faulhaber, J.K. Andersen, and T.J. Rosales, Ultrafast Processes in Spectroscopy IX(1995), (in press).

  24. J.E. Evans, K.W. Springer, and J.Z. Zhang, J. Chem. Phys. 107, 7 (1994).

    Google Scholar 

  25. M. Kaschke, N.P. Ernsting, U. Muller, and H. Weller, Chem. Phys. Lett. 168, 543 (1990).

    Article  Google Scholar 

  26. J.M. Lantz and R.M. Corn, J. Phys. Chem. 98, 9387 (1994).

    Google Scholar 

  27. N.S. Lewis, Annu. Rev. Phys. Chem. 42, 543 (1991).

    Article  Google Scholar 

  28. A. Kay and M. Gratzel, J. Phys. Chem. 97, 6272 (1993).

    Google Scholar 

  29. A. Kay, R. Humphry-Baker, and M. Gratzel, J. Phys. Chem. 98, 952 (1994).

    Google Scholar 

  30. K.R. Gopidas, M. Bohorquez, and P.V. Kamat, J. Phys. Chem. 94, 6435 (1990).

    Google Scholar 

  31. R. Vogel, P. Hoyer, and H. Weller, J. Phys. Chem. 98, 3183 (1994).

    Google Scholar 

  32. N. Serpone, E. Borgarello, and M. Gratzel, J. Chem. Soc. Chem. Commum. 342 (1983).

  33. L. Spanhel, H. Weller, and A. Henglein, J. Am. Chem. Soc. 109, 6632 (1987).

    Google Scholar 

  34. C. Kormann, D.W. Bahnemann, and M.R. Hoffmann, J. Phys. Chem. 92, 5196 (1988).

    Google Scholar 

  35. G. Frens, Nature: Physical Science 241, 20 (1973).

    Google Scholar 

  36. J.S. Suh, D.P. DiLella, and M. Moskovits, J. Phys. Chem 87, 1540 (1983).

    Google Scholar 

  37. (a) V.S. Gurin and M.V. Artemyev, J. Crystal Growth 138, 993 (1994); (b) S. Gallardo, M. Gutierrez, A. Henglein, and E. Janata, Ber. Bunsenges. Phys. Chem. 93, 1080 (1989); (c) M.T. Nenadovic, M.I. Comor, V. Vasic, and O.I. Micic, J. Phys. Chem. 94, 6390 (1990).

    Article  Google Scholar 

  38. V.L. Colvin, A.N. Goldstein, and P.A. Alivisatos, J. Am. Chem. Soc. 114, 5221 (1992).

    Google Scholar 

  39. Y. Wang, J. Phys. Chem. 95, 1119 (1991).

    Google Scholar 

  40. L.E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Article  Google Scholar 

  41. L.E. Brus, J. Chem. Phys. 80, 4403 (1984).

    Article  Google Scholar 

  42. P.E. Lippens and M. Lannoo, Phys. Rev. B 39, 10935 (1989).

    Article  Google Scholar 

  43. R.W. Schoenlein, D.M. Mittleman, J.J. Shiang, A.P. Alivisatos, and C.V. Shank, Phys. Rev. Lett. 70, 1014 (1993).

    Article  Google Scholar 

  44. N.E. Christensen and B.O. Seraphin, Solid State Communication 8, 1224 (1970).

    Google Scholar 

  45. D.R. Huffman, Optical Effects Associated With Small Particles, edited by P.W. Barber and R.K. Chang (World Scientific, Singapore, 1988), Chap. 5.

    Google Scholar 

  46. R.H. Doremus, J. Chem. Phys. 40, 2391 (1964).

    Google Scholar 

  47. M. Quinten and U. Kreibig, Appl. Opt. 32, 6173 (1993).

    Google Scholar 

  48. G. Berkovic and S. Efrima, Langmuir 9, 355 (1992).

    Google Scholar 

  49. F. Hache, D. Ricard, and C. Flytzanis, J. Opt. Soc. Am. B3, 1647 (1986).

    Google Scholar 

  50. K. Uchida, S. Kaneko, S. Omi, C. Hata, H. Tanji, Y. Asahara, A.J. Ikushima, T. Tokizaki, and A. Nakamura, J. Opt. Soc. Am. B11, 1236 (1994).

    Google Scholar 

  51. Y. Wang and N. Herron, Phys. Rev. B 42, 7253 (1990).

    Article  Google Scholar 

  52. P.E. Lippens and M. Lannoo, Phys. Rev. B 39, 10935 (1989).

    Article  Google Scholar 

  53. Y. Wang and N. Herron, J. Phys. Chem. 95, 525 (1991).

    Google Scholar 

  54. W. Choi, A. Termin, and M.R. Hoffmann, J. Phys. Chem. 98, 13673 (1994).

    Google Scholar 

  55. P. Triggs, Helv. Phys. Acta. 58, 657 (1985).

    Google Scholar 

  56. R. Meming, Electrochim. Acta. 25, 77 (1980).

    Article  Google Scholar 

  57. D. Steinmuller-Nethl, R.A. Hopfel, E. Gornik, A. Leitner, and F.A. Ausenegg, Phys. Rev. Lett. 68, 389 (1992).

    Article  Google Scholar 

  58. C.K. Sun, F. Vallee, L. Acioli, E.P. Ippen, and J.G. Fujimoto, Phys. Rev. B 48, 12365 (1993).

    Article  Google Scholar 

  59. S.D. Brorson, J.G. Fujimoto, and E.P. Ippen, Phys. Rev. Lett. 59, 1962 (1987).

    Article  Google Scholar 

  60. W.S. Fann, R. Storz, H.W.K. Tom, and J. Bokor, Phys. Rev. B 46, 13592 (1992).

    Article  Google Scholar 

  61. R.H.M. Groeneveld, R. Sprik, and A. Lagendijk, Phys. Rev. Lett. 64, 784 (1990).

    Article  Google Scholar 

  62. E.D. Belotskii and P.M. Tomchuk, Int. J. Electronics 73, 955 (1992).

    Google Scholar 

  63. E.D. Belotskii and P.M. Tomchuk, Int. J. Electronics 69, 173 (1990).

    Google Scholar 

  64. F. Hache, D. Ricard, and C. Girard, Phys. Rev.B38, 7990 (1988).

    Article  Google Scholar 

  65. R.C. Weast (ed.), CRC Handbook of Chemistry and Physics, (CRC Press, Boca Raton, Florida, 1984), p. E–76.

    Google Scholar 

  66. J.P. Girardeau-Montaut, C. Girardeau-Montaut, S.D. Moustaizis, and C. Fotakis, Appl. Phys. Lett. 64, 3664 (1994).

    Article  Google Scholar 

  67. P.V. Kamat, T.W. Ebbesen, N.M. Dimitrijevic, and A.J. Nozik, Chem. Phys. Lett. 157, 384 (1989).

    Article  Google Scholar 

  68. M.G. Bawendi, W.L. Wilson, L. Rothberg, P.J. Carroll, T.M. Jedju, M.L. Steigerwald, and L.E. Brus, Phys. Rev. Lett. 65, 1623 (1990).

    Article  Google Scholar 

  69. M. Gratzel and A.J. Frank, J. Phys. Chem. 86, 2964 (1982).

    Google Scholar 

  70. M. Haase, H. Weller, and A. Henglein, J. Phys. Chem. 92, 4706 (1988).

    Google Scholar 

  71. Z. Alfassi, D. Bahnemann, and A. Henglein, J. Phys. Chem. 86, 4656 (1982).

    Google Scholar 

  72. S. Baral, A. Fojtik, H. Weller, and A. Henglein, J. Am. Chem. Soc. 108, 375 (1986).

    Google Scholar 

  73. A. Henglein, A. Kumar, E. Janata, and H. Weller, Chem. Phys. Lett. 132, 133 (1986).

    Article  Google Scholar 

  74. R.F. Howe and M. Gratzel, J. Phys. Chem. 89, 4495 (1985).

    Google Scholar 

  75. Y.Z. Hu, M. Lindberg, S.W. Koch, and N. Peyghambarian, SPIE 1261, 88 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, B., Waters, D., Faulhaber, A. et al. Preparation and Ultrafast Optical Characterization of Metal and Semiconductor Colloidal Nano-Particles. Journal of Sol-Gel Science and Technology 9, 125–137 (1997). https://doi.org/10.1023/A:1026436328858

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026436328858

Navigation