Skip to main content
Log in

An Empirical Approach for Estimating the Density of Multicomponent Aqueous Solutions Obeying the Linear Isopiestic Relation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An empirical approach is presented for the density of aqueous multicomponentsolutions conforming to the linear isopiestic relation. This approach can be usedto estimate the densities of multicomponent systems from data on the constituentbinary subsystems at the same water activity. Predicted and measured densitiesfor 22 mixtures have been compared, using the simple Young's rule, theisopycnotic mixing rule of Teng and Lenzi, and the present method. The present methodand Young's rule give the most accurate predictions for strong electrolyte mixtureswithout common ions and for the mixtures with strong ion complexes, respectively.There is no universal best method for the strong electrolyte mixtures with commonions. An extensive comparison has also been given between apparent molarvolume predictions by Young's rule and by the new method. The two rules arerelatively better for the strong electrolyte mixtures without common ions andmixtures containing the transition metal chlorides, respectively. However, neitheris universally better for mixtures of strong common-ion electrolytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. D. J. Turner. Thermodynamics of Aqueous Systems with Industrial Applications,S.A. Newman ed. (American Chemical Society, Washington, D.C. 1980), p. 653.

    Google Scholar 

  2. A. M. Rowe and J. C. S. Chou, J. Chem. Eng. Data 15, 61 (1970).

    Google Scholar 

  3. F. P. Millero, Pure Appl. Chem. 57, 1015 (1985).

    Google Scholar 

  4. E. B. Woodruff and H. B. Lammers, Stream Plant Operation, 3d edn., (McGraw Hill, New York, 1950).

    Google Scholar 

  5. P. Novotny and O. Sohnel, J. Chem. Eng. Data 33, 49 (1988).

    Google Scholar 

  6. Y. F. Hu and Z. C. Wang, J. Chem. Thermodyn. 26, 429 (1994).

    Google Scholar 

  7. Z. C. Wang, H. L. Yu, and Y. F. Hu, J. Chem. Thermodyn. 26, 171 (1994).

    Google Scholar 

  8. Y. F. Hu and Z. C. Wang, J. Chem. Thermodyn. 29, 879 (1997).

    Google Scholar 

  9. Y. F. Hu, J. Chem. Soc. Faraday Trans. 94, 913 (1998).

    Google Scholar 

  10. Y. F. Hu, J. Solution Chem. 27, 457 (1998).

    Google Scholar 

  11. Y. F. Hu and Z. C. Wang, J. Chem. Soc. Faraday Trans. 94, 3251 (1998).

    Google Scholar 

  12. A. B. Zdanovskii, Tr. Soly. Labo. Akad. Nauk SSSR, No. 6, (1936).

  13. R. H. Stokes and R. A. Robinson, J. Phys. Chem. 70, 2126 (1966).

    Google Scholar 

  14. H. Chen, J. Sangster, T. T. Teng, and F. Lenzi, Can. J. Chem. Eng. 51, 234 (1973).

    Google Scholar 

  15. C. E. Ruby and J. Kawai, J. Amer. Chem. Soc. 48, 1119 (1926).

    Google Scholar 

  16. T. F. Young and M. B. Smith, J. Phys. Chem. 58, 716 (1954).

    Google Scholar 

  17. D. G. Miller, J. Solution Chem. 24, 967 (1995).

    Google Scholar 

  18. T. T. Teng and F. Lenzi, Can. J. Chem. Eng. 53, 673 (1975).

    Google Scholar 

  19. J. E. Garrod and T. M. Herrington, J. Phys. Chem. 74, 363 (1970).

    Google Scholar 

  20. H. Uedaira and H. Uedaira, J. Phys. Chem. 74, 1931 (1970).

    Google Scholar 

  21. V. K. Filippov, D. S. Barkov, and Yu. A. Fedorov, J. Solution Chem. 15, 611 (1986).

    Google Scholar 

  22. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd revised ed. (Butterworths, London, 1965).

    Google Scholar 

  23. R. A. Robinson and R. H. Stokes, J. Phys. Chem. 65, 1954 (1961).

    Google Scholar 

  24. S. A. Kosa and D. R. Schreiber, J. Solution Chem. 23, 901 (1994).

    Google Scholar 

  25. C. T. A. Chen, J. H. Chen, and F. K. Millero, J. Chem. Eng. Data 25, 307 (1980).

    Google Scholar 

  26. H. L. Zhang and H. S. Han, J. Chem. Eng. Data 41, 516 (1996).

    Google Scholar 

  27. A. Kumer, Can. J. Chem. 63, 3200 (1985).

    Google Scholar 

  28. A. Kumer, J. Chem. Eng. Data 34, 446 (1989).

    Google Scholar 

  29. L. A. Romanklew and I. M. Chou, J. Chem. Eng. Data 28, 300 (1983).

    Google Scholar 

  30. A. Kumer, J. Chem. Eng. Data 34, 87 (1989).

    Google Scholar 

  31. M. S. Stakhanova, A. Yu. Epikhin, and M. Kh. Karapet'yants, Russ. J. Phys. Chem. 37, 1389 (1963).

    Google Scholar 

  32. H. L. Zhang, G. H. Chen, and S. J. Han, J. Chem. Eng. Data 42, 526 (1997).

    Google Scholar 

  33. T. Isono, J. Chem. Eng. Data 29, 45 (1984).

    Google Scholar 

  34. E. A. Dedick, J. P. Hershey, S. Sotolongo, D. J. Stade, and F. K. Millero, J. Solution Chem. 19, 353 (1990).

    Google Scholar 

  35. L. Stroth and H. Schonert, J. Chem. Thermodyn. 9, 851 (1977).

    Google Scholar 

  36. F. J. Millero, L. M. Connaughton, F. Vinokurova, and P. V. Chetirkin, J. Solution Chem. 14, 837 (1985).

    Google Scholar 

  37. J. A. Rard and D. G. Miller, J. Phys. Chem. 92, 6133 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, YF. An Empirical Approach for Estimating the Density of Multicomponent Aqueous Solutions Obeying the Linear Isopiestic Relation. Journal of Solution Chemistry 29, 1229–1236 (2000). https://doi.org/10.1023/A:1026436228918

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026436228918

Navigation