Skip to main content
Log in

The effect of verapamil on mitochondrial calcium content in normoxic, hypoxic and reoxygenated rat liver

  • Published:
The Histochemical Journal Aims and scope Submit manuscript

Abstract

Calcium channel blockers protect cells against ischaemia-reperfusion injury. In the present study, the effect of verapamil on mitochondrial calcium content was investigated in situ in normoxic, hypoxic and reoxygenated rat liver. Subcellular distribution of exchangeable calcium ions, which form an electron-dense precipitate with antimonate, was demonstrated with the glutaraldehyde-osmium antimonate technique. Calcium precipitates were quantified morphometrically using automatic image analysis. In normoxic liver, the mitochondrial calcium content formed a gradient decreasing from the periportal to perivenous regions. The low mitochondrial calcium content in perivenous regions remained unaffected in all experimental conditions. In hypoxic and reoxygenated liver, the calcium content in mitochondria of the periportal areas was significantly reduced. Verapamil pretreatment levelled the calcium gradient in normoxic liver by reducing the periportal calcium content. Verapamil had no effect on the mitochondrial calcium content in hypoxic liver. In contrast, in verapamil-pretreated reoxygenated liver, the mitochondrial calcium content in periportal mitochondria increased significantly, thus restoring the zonal calcium gradient. In conclusion, these data suggest that modulations of mitochondrial calcium content in the periportal region of the liver lobule may play an important role in the protective effects of verapamil against ischaemia-reperfusion injury

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahn, C.C. & Krivanek, O.L. (1983) A reference guide of electron energy loss spectra covering all stable elements. Gatan, Warrendale, PA: EELS Atlas.

    Google Scholar 

  • AngermÜller, S., Juchem, R., Beier, K., Konrad, T. & Kusterer, K. (1994) Zonal heterogeneity of calcium distribution in rat hepatocytes: an electron microscopic study with a combined glutaraldehydeosmium antimonate technique. J. Histochem. Cytochem. 42, 593–8.

    PubMed  Google Scholar 

  • AngermÜller, S., Schunk, M. & Kusterer, K. (1995a) Alteration of xanthine oxidase activity in sinusoidal endothelial cells and morphological changes of Kupffer cells in hypoxic and reoxygenated rat liver. Hepatology 21, 1594–1601.

    Article  PubMed  Google Scholar 

  • AngermÜller, S., Schunk, M., Kusterer, K., Konrad, T. & Usadel, K.H. (1995b) Alterations of Na+, K+-ATPase activity after hypoxia and reoxygenation in the perfused rat liver: an electron microscopic cytochemical study. J. Hepatol. 22, 565–75.

    Article  PubMed  Google Scholar 

  • Arsenault, A.L. & Ottensmeyer, F.P. (1983) Quantitative spatial distributions of calcium, phosphorus, and sulfur in calcifying epiphysis by high resolution electron spectroscopic imaging. Proc. Natl. Acad. Sci. USA 80, 1322–6.

    Article  PubMed  CAS  Google Scholar 

  • Berger, M.L., Reynolds, R.C., Hagler, H.K., Bellotto, D., Parsons, D., Mulligan, K.J. & Buja, L.M. (1989) Anoxic hepatocyte injury: role of reversible changes in elemental content and distribution. Hepatology 9, 219–28.

    Article  PubMed  CAS  Google Scholar 

  • Bonventre, J.V. (1988) Mediators of ischemic renal injury. Annun. Rev. Med. 39, 531–44.

    Article  CAS  Google Scholar 

  • Borgers, M., ThonÉ, F., Verheyen, A. & Ter Keurs, H.E.D.J. (1984) Localization of calcium in skeletal and cardiac muscle. Histochem. J. 16, 295–309.

    Article  PubMed  CAS  Google Scholar 

  • Borgers, M., Shu, L.G., Xhonneux, R., ThonÉ, F. & Van Overloop, P. (1987) Changes in ultrastructure and Ca2+ distribution in the isolated working rabbit heart after ischemia. Am. J. Pathol. 126, 92–102.

    PubMed  CAS  Google Scholar 

  • Carafoli, E. (1987) Intracellular calcium homeostasis. Ann. Rev. Biochem. 56, 395–433.

    Article  PubMed  CAS  Google Scholar 

  • Claret-Berthon, B., Claret, M. & Mazet, J.L. (1977) Fluxes and distribution of calcium in rat liver cells: kinetic analysis and identification of pools. J. Physiol. 272, 529–52.

    PubMed  CAS  Google Scholar 

  • De Groot, H. & Littauer, A. (1989) Hypoxia, reactive oxygen, and cell injury. Free Rad. Biol. Med. 6, 541–51.

    Article  PubMed  CAS  Google Scholar 

  • Denton, R.M. & Mccormack, J.G. (1985) Physiological role of Ca2+ transport by mitochondria. Nature 315, 635.

    Article  PubMed  CAS  Google Scholar 

  • Farber, J.L. (1982) Biology of disease. Membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab. Invest. 47, 114–23.

    PubMed  CAS  Google Scholar 

  • Farber, J.L., Chien, K.R. & Mittnacht, S. (1981) The pathogenesis of irreversible cell injury in ischemia. Am. J. Pathol. 102, 271–81.

    PubMed  CAS  Google Scholar 

  • GÓmez-Puyou, A., Sandoval, F., PeÑa, A., ChÁvez, E. & Tuena, M. (1969) Effect of Na+ and K+ on mitochondrial respiratory control, oxygen uptake, and adenine triphosphatase activity. J. Biol. Chem. 244, 5339–45.

    PubMed  Google Scholar 

  • Happel, R.D. & Simson, J.A.V. (1982) Distribution of mitochondrial calcium: antimonate precipitation and atomic absorption spectroscopy. J. Histochem. Cytochem. 30, 305–11.

    PubMed  CAS  Google Scholar 

  • Hatanaka, N., Kamiike, W., Shimizu, S., Miyata, M., Inoue, T., Tagawa, K. & Matsuda, H. (1992) Ischemic liver injury induced by calcium released from mitochondria. Transpl. Proc. 24, 1620–2.

    CAS  Google Scholar 

  • HÄussinger, D., Stehle, T. & Lang, F. (1990) Volume regulation in liver: further characterization by inhibitors and ionic substitutions. Hepatology 11, 243–54.

    Article  PubMed  Google Scholar 

  • Inoue, T., Yoshida, Y., Nishimura, M., Kurosawa, K. & Tagawa, K. (1993) Ca2+-induced, phospholipase-independent injury during reoxygenation of anoxic mitochondria. Biochim. Biophys. Acta 1140, 313–20.

    Article  PubMed  CAS  Google Scholar 

  • Jungermann, K. & Katz, N. (1989) Functional specialization of different hepatocyte populations. Physiol. Rev. 69, 708–18.

    PubMed  CAS  Google Scholar 

  • Jungermann, K. & Sasse, D. (1978) Heterogeneity of liver parenchymal cells. Trends Biochem. Sci. 3, 198–203.

    Article  CAS  Google Scholar 

  • Kakkar, P., Mehrotra, S. & Viswanathan, P.N. (1992) Interrelation of active oxygen species, membrane damage and altered calcium functions. Mol. Cell. Biochem. 111, 11–15.

    Article  PubMed  CAS  Google Scholar 

  • Klein, R.L., Yen, S.S. & Thureson-Klein, A. (1972) Critique on the K-pyroantimonate method for semiquantitative estimation of cations in conjunction with electron microscopy. J. Histochem. Cytochem. 20, 65–78.

    PubMed  CAS  Google Scholar 

  • Konrad, T., BlÖchle, C., Haller, G., BrÖlsch, C.E., Usadel, K.H. & Kusterer, K. (1995) Verapamil and flunarizin protect the isolated perfused rat liver against warm ischemia and reperfusion injury. Res. Exp. Med. 195, 61–8.

    Article  CAS  Google Scholar 

  • Kusterer, K., BlÖchle, C., Konrad, T., Palitzsch, K.D. & Usadel, K.H. (1993) Rat liver injury induced by hypoxic ischemia and reperfusion: protective action by somatostatin and two derivatives. Regul. Pept. 44, 251–6.

    Article  PubMed  CAS  Google Scholar 

  • Lauterburg, B.H. (1987) Early disturbance of calcium translocation across the plasma membrane in toxic liver injury. Hepatology 7, 1179–83.

    Article  PubMed  CAS  Google Scholar 

  • Loud, A.V. (1968) A quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. Cell. Biol. 37, 27–46.

    Article  PubMed  CAS  Google Scholar 

  • Mccormack, J.G., Halestrap, A.P. & Denton, R.M. (1990): Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol. Rev. 70, 391–425.

    PubMed  CAS  Google Scholar 

  • Mittnacht, S. & Farber, J.L. (1981) Reversal of ischemic mitochondrial dysfunction. J. Biol. Chem. 256, 3199–206.

    PubMed  CAS  Google Scholar 

  • Murata, M., Monden, M., Umeshita, H., Nakano, H., Kanai, T., Gotoh, M. & Mori, T. (1994) Role of intracellular calcium in superoxide-induced hepatocyte injury. Hepatology 19, 1223–8.

    Article  PubMed  CAS  Google Scholar 

  • Nauta, R.J., Tsimoyiannis, E., Uribe, M., Walsh, D.B., Miller, D. & Butterfield, A. (1991) The role of calcium ions and calcium channel entry blockers in experimental ischemia-reperfusion-induced liver injury. Ann. Surg. 213, 137–42.

    Article  PubMed  CAS  Google Scholar 

  • Okuda, M., Lee, H.C., Chance, B. & Kumar, C. (1992) Depletion and repletion of Ca2+ in the perfused rat liver. J. Lab. Clin. Med. 120, 57–66.

    PubMed  CAS  Google Scholar 

  • Somlyo, A.P., Bond, M. & Somlyo, A.V. (1985) Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature 314, 622–5.

    Article  PubMed  CAS  Google Scholar 

  • Takeyama, N., Matsuo, N. & Tanaka, T. (1993) Oxidative damage to mitochondria is mediated by Ca2+-dependent inner membrane permeability transition. Biochem. J. 294, 719–25.

    PubMed  CAS  Google Scholar 

  • Thurman, R.G., Apel, E., Badr, M. & Lemasters, J.L. (1988) Protection of liver by calcium entry blockers. Ann. NY Acad. Sci. 522, 757–70.

    Article  PubMed  CAS  Google Scholar 

  • Trump, B.F. & Berezesky, I.K. (1984) Role of sodium and calcium regulation in toxic cell injury. In Drug Metabolism and Drug Toxicity (edited by J.R. Mitchell & M.G. Horning) pp. 261–300. New York: Raven Press.

    Google Scholar 

  • Uceda, G., GarcÍa, A.G., Guantes, J.M., Michelena, P. & Montiel, C. (1995) Effects of Ca2+ channel antagonist subtypes on mitochondrial Ca2+ transport. Eur. J. Pharmacol. 289, 73–80.

    Article  PubMed  CAS  Google Scholar 

  • Veitch, K. & Hue, L. (1994) Flunarizine and cinnarizine inhibit mitochondrial complexes I and II: possible implication for Parkinsonism. Mol. Pharmacol. 45, 158–63.

    PubMed  CAS  Google Scholar 

  • Wick, S.M. & Hepler, P.K. (1982) Selective localization of intracellular Ca2+ with potassium antimonate. J. Histochem. Cytochem. 30, 1190–204.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konrad, T., Beier, K., Kusterer, K. et al. The effect of verapamil on mitochondrial calcium content in normoxic, hypoxic and reoxygenated rat liver. J Mol Hist 29, 309–315 (1997). https://doi.org/10.1023/A:1026426615130

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026426615130

Keywords

Navigation