Journal of Applied Electrochemistry

, Volume 27, Issue 1, pp 77–82 | Cite as

Effect of pyrolysis temperature of the catalytic activity of active carbon+cobalt phthalocyanine in sulfur dioxide oxidation by oxygen



Structural changes during the pyrolysis of the catalyst ‘active carbon+cobalt phthalocyanine’ (Ac+CoPc) in the temperature range 500–800°C are investigated using infrared spectroscopy, XRD and DTG analysis. The decomposition products contain organic residues of the phthalocyanine rings and separate phases of CO3O4 and β-Co. The effect of pyrolysis temperature on: (i) the chemical stability of Co in the pyrolyzed CoPc in 0.5M H2 SO4; (ii) the electrocatalytic activity for oxidation of SO2 by oxygen; and (iii) the partial electrochemical reactions of SO2 oxidation and oxygen reduction, has been studied. The rate of electrochemical oxidation of SO2 is affected only by the active centres formed on pyrolysis of the chelate rings. The presence of Co at lower pyrolysis temperatures decreases the oxygen diffusion limitations. It is shown that the rate of SO2 oxidation by oxygen is limited by mass transport of oxygen.


Pyrolysis Active Carbon Phthalocyanine Sulfur Dioxide Oxygen Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    O. A. Levina and K. A. Radyushkina, USSR Patent 542 416 (1976).Google Scholar
  2. [2]
    V. S. Bagotski, M. H. Tarasevich, O. A. Levina, K. A. Radyushkina and S. I. Andruseva, J. Power Sources 2 (1977/78) 233.Google Scholar
  3. [3]
    H. Janhke, M. Schonborn and G. Zimmermann, Topics in current Chemistry 61 (1976) 133.Google Scholar
  4. [4]
    K. Petrov, I. Nikolov and T. Vitanov, Int. J. Hydrogen Energy 9 (1984) 901.Google Scholar
  5. [5]
    K. Okabayashi, O. Ikeda and H. Tamura, Chem. Lett. (1982) 1659.Google Scholar
  6. [6]
    J. A. R. van Veen, J. F. van Bar and C. J. Kroese, J. Chem. Soc. Faraday Trans. 1 77 (1981) 2827.Google Scholar
  7. [7]
    A. van der Putten, A. Elzing, W. Vischer and E. Barendrecht, J. Electoanal. Chem. 205 (1986) 233.Google Scholar
  8. [8]
    G. Grunig, K. Wiesener, S. Gamgurtsev and A. Kaisheva, I. Iliev, J. Electroanal. Chem. 159 (1983) 155.Google Scholar
  9. [9]
    K. Wiesener, Electrochimiya 18 (1982) 758.Google Scholar
  10. [10]
    I. Nikolov, K. Petrov and T. Vitanov, J. Appl. Electrochem., in press.Google Scholar
  11. [11]
    T. Vitanov, E. Budevski, I. Nikolov, K. Petrov, V. Naidenov and Ch. Chirstov, I. Chem. Eng. Symp. Series, Leeds, UK, no, 116 (1990).Google Scholar
  12. [12]
    W. Douglas, US Patent, 4 049 572 (1977)Google Scholar
  13. [13]
    V. Minkova, M. Razvigorova, M. Goranova, L. Lutzkanov and G. Angelova, Fuel 70 (1991) 713.Google Scholar
  14. [14]
    I. Iliev, S. Gamgurtsev, A. Kaisheva, E. Vakanova, I. Mukhovski and E. Bedevski, Commun. Dept. Chem. Bulg. Acad. Sci. 7 (1974) 223.Google Scholar
  15. [15]
    I. Iliev, P. Atanasov, S. Gamgurtsev and A. Kaisheva, 28th Intersoc. Energy Conversion Engineering Conference, 8-113, Atlanta, USA (1993).Google Scholar
  16. [16]
    A. Kaisheva, I. Iliev and S. Gamgurtsev, J. Power Sources 13 (1994) 181.Google Scholar
  17. [17]
    A. Kaisheva, S. Gamgurtsev and I. Iliev, Electrochimija 18 (1982) 139.Google Scholar

Copyright information

© Chapman and Hall 1997

Authors and Affiliations

    • 1
    • 1
    • 1
    • 1
    • 1
  1. 1.Central Laboratory of Electrochemical Power SourcesBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations