Skip to main content
Log in

Active Control of Molecular Dynamics: Coherence versus Chaos

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The status of theoretical and experimental studies of the active control of molecular dynamics is surveyed, with attention focused on the control of product formation in a branching unimolecular reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).

    Google Scholar 

  2. D. K. Arrowsmith and C. M. Place, An Introduction to Dynamical Systems (Cambridge University Press, Cambridge, 1990).

    Google Scholar 

  3. See, for example, B. V. Chirikov, A universal instability of many-dimensional oscillator systems, Phys. Rep. 52:263 (1979).

    Google Scholar 

  4. Y. B. Pesin, Characteristic Lyapunov exponents, and smooth ergodic theory, Usp. Mat. Nauk. 32:55 (1977) [Math. Surveys 32:55 (1977)].

    Google Scholar 

  5. E. Ott, C. Grebogi, and J. A. Yorke, Controlling chaos, Phys. Rev. Lett. 64:1196 (1990).

    Google Scholar 

  6. D. Auerbach, C. Grebogi, E. Ott, and J. A. Yorke, Controlling chaos in high dimensional systems, Phys. Rev. Lett. 69:3479 (1992).

    Google Scholar 

  7. W. L. Ditt, S. N. Rauseo, and M. L. Spano, Experimental control of chaos, Phys. Rev. Lett. 65:3211 (1990).

    Google Scholar 

  8. S. Hayes, C. Grebogi, E. Ott, and A. Mark, Experimental control of chaos for communication, Phys. Rev. Lett. 73:1781 (1994).

    Google Scholar 

  9. S. A. Rice and R. Kosloff, Is dynamical chaos the same phenomenon in classical and quantum mechanical hamiltonian system?, J. Phys. Chem. 86:2153 (1982).

    Google Scholar 

  10. R. Kosloff and S. A. Rice, The influence of quantization on the onset of chaos in hamiltonian systems: The Kolmogorov entropy interpretation, J. Chem. Phys. 74:1340 (1981).

    Google Scholar 

  11. J. Manz, A simplified proof of the Kosloff Rice theorem: Intramolecular quantum dynamics cannot be chaotic, J. Chem. Phys. 91:2190 (1989).

    Google Scholar 

  12. E. Balslev and J. M. Combes, Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions, Commun. Math. Phys. 22:280 (1971).

    Google Scholar 

  13. Ch. Obcemea and E. Brandas, Analysis of Prigogine's theory of subdynamics, Annals of Physics 151:383 (1983).

    Google Scholar 

  14. See, for example, Resonances, E. Brandas and N. Elander, eds. (Springer-Verlag, Sweden, 1987).

  15. C. A. Chatzidimitriou-Dreismann, Complex scaling and dynamical processes in amorphous condensed matter, Adv. Chem. Phys. 80:201 (1991).

    Google Scholar 

  16. N. Moiseyev, P. R. Certain, and F. Weinhold, Resonance properties of complex-rotated hamiltonians, Molec. Phys. 36:1613 (1987).

    Google Scholar 

  17. S. A. Rice, S. Jang, and M. Zhao, Comment on quantum transition state theory, J. Phys. Chem. 100:11893 (1996).

    Google Scholar 

  18. G. M. Huang, T. J. Tarn, and J. W. Clark, On the controllability of quantum mechanical systems, J. Math. Phys. 24:2608 (1983).

    Google Scholar 

  19. T. J. Tarn, G. Huang, and J. W. Clark, Modelling of quantum mechanical control system, Math. Modelling 1:109 (1980).

    Google Scholar 

  20. T. J. Tarn, J. W. Clark, and G. M. Huang, Local controllability of generalized quantum mechanical systems, in Modeling and Control of Systems in Engineering, Quantum Mechanics, Economics, and Biosciences, A. Blaquière, ed. (Springer-Verlag, Berlin, 1989).

    Google Scholar 

  21. C. K. Ong, G. M. Huang, T. J. Tarn, and J. W. Clark, Invertibility of quantum-mechanical control systems, Math. Systems Theory 17:335 (1984); J. W. Clark, C. K. Ong, T. J. Tarn, and G. M. Huang, Quantum nondemolition filters, Math. Systems Theory 18:33 (1985).

    Google Scholar 

  22. T. J. Tarn, J. W. Clark, and G. M. Huang, in Modeling and Control of Systems, A. Blaquiere, ed. (Springer, Berlin, 1995).

    Google Scholar 

  23. V. Ramakrishna, M. V. Salapaka, M. Dahleh, H. Rabitz, and A. Peirce, Controllability of molecular systems, Phys. Rev. A 51:960 (1995).

    Google Scholar 

  24. S. Tersigni, P. Gaspard, and S. A. Rice, On using shaped-pulses to control the selectivity of product formation in a chemical reaction: An application to a multiple level system, J. Chem. Phys. 93:1670 (1990).

    Google Scholar 

  25. M. Shapiro and P. Brumer, Quantum limitations on dynamics and control, J. Chem. Phys. 103:487 (1995).

    Google Scholar 

  26. A. P. Peirce, M. A. Dahleh, and H. Rabitz, Optimal control of quantum mechanical systems: Existence, numerical approximation and application, Phys. Rev. A 37:4950 (1988).

    Google Scholar 

  27. M. Zhao and S. A. Rice, Comment concerning the optimal control of transformations in an unbounded quantum system, J. Chem. Phys. 95:2465 (1991).

    Google Scholar 

  28. M. Demiralp and H. Rabitz, Optimally controlled quantum molecular dynamics—A per turbation formulation and the existence of multiple solutions, Phys. Rev. A 47:809 (1993).

    Google Scholar 

  29. D. J. Tannor and S. A. Rice, Control of selectivity of chemical reaction via control of wave packet evolution, J. Chem. Phys. 83:5013 (1985).

    Google Scholar 

  30. D. J. Tannor, R. Kosloff, and S. A. Rice, Coherent pulse sequence induced control of selectivity of reactions: Exact quantum mechanical calculations, J. Chem. Phys. 85:5805 (1986).

    Google Scholar 

  31. T. Baumert, J. Helbing, and G. Gerber, Coherent control with femtosecond laser pulses, Adv. Chem. Phys. 101:47 (1997).

    Google Scholar 

  32. T. Baumert, M. Grosser, R. Thalweiser, and G. Gerber, Femtosecond time-resolved molecular multiphoton ionization: The Na2 system, Phys. Rev. Lett. 67:3753 (1991).

    Google Scholar 

  33. T. Baumert, R. Thalweiser, V. Weise, and G. Gerber, in Femtosecond Chemistry, J. Manz and L. Wöste, eds. (Verlag Chemie, Weinheim, 1994).

    Google Scholar 

  34. T. Baumert and G. Gerber, Fundamental interactions of molecules (Na2, Na3) with intense femtosecond laser pulses, Isr. J. Chem. 34:103 (1994).

    Google Scholar 

  35. N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero, V. Romero-Rochin, J. A. Cina, G. R. Fleming, and S. A. Rice, Fluorescence-detected wave packet interferometry: Time resolved molecular-spectroscopy with sequences of femtosecond phase-locked pulses, J. Chem. Phys. 95:1487 (1991).

    Google Scholar 

  36. M. Shapiro and P. Brumer, Laser control of product quantum state populations in unimolecular reactions, J. Chem. Phys. 84:4103 (1986).

    Google Scholar 

  37. M. Shapiro and P. Brumer, Coherent chemistry: Controlling chemical reactions with lasers, Acc. Chem. Soc. 22:407 (1989).

    Google Scholar 

  38. P. Brumer and M. Shapiro, Laser control of molecular processes, Ann. Rev. Phys. Chem. 43:257 (1992).

    Google Scholar 

  39. J. A. Fiss, L. C. Zhu, K. Suto, G. Z. He, and R. J. Gordon, Mechanism of the coherent control of the photoionization and photodissociation of HI and DI, Chem. Phys. 233:335 (1998).

    Google Scholar 

  40. L. Zhu, K. Suto, J. A. Fiss, R. Wada, T. Seideman, and R. J. Gordon, Effect of resonances on the coherent control of the photoionization and photodissociation of HI and DI, Phys. Rev. Lett. 79:4108 (1997).

    Google Scholar 

  41. M. Shapiro, Z. Chen, and P. Brumer, Simultaneous control of selectivity and yield of molecular dissociation: Pulsed incoherent interference control, Chem. Phys. 217:325 (1997).

    Google Scholar 

  42. Z. D. Chen, M. Shapiro, and P. Brumer, Incoherent interference control of 2-photon dis sociation, Phys. Rev. A 52:2225 (1995).

    Google Scholar 

  43. Z. Chen, P. Prumer, and M. Shapiro, Coherent radiative control of molecular photodissociation via two-photon resonance versus two-photon interference, Chem. Phys. Lett. 198:498 (1992).

    Google Scholar 

  44. A. Shnitman, I. Sofer, I. Golub, A. Yogev, M. Shapiro, Z. Chen, and P. Brumer, Experimental observation of laser control: Electronic branching in the photodissociation of Na2, Adv. Chem. Phys. 101:285 (1997).

    Google Scholar 

  45. A. Shnitman, I. Sofer, I. Golub, A. Yogev, M. Shapiro, Z. Chen, and P. Brumer, Experimental observation of laser control: Electronic branching in the photodissociation of Na2, Phys. Rev. Lett. 76:2886 (1996).

    Google Scholar 

  46. U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, Population transfer between molecular vibrational levels by stimulated Raman scattering with partially overlapping laser fields: A new concept and experimental results, J. Chem. Phys. 92:5363 (1990).

    Google Scholar 

  47. G. W. Coulston and K. Bergmann, Population transfer by stimulated Raman scattering with delayed pulses: Analytical results for multilevel systems, J. Chem. Phys. 96:3467 (1992).

    Google Scholar 

  48. K. Bergmann and B. W. Shore, in Molecular Dynamics and Spectroscopy by Stimulated Emission Pumping, H.-L. Dai and R. W. Field, eds. (World Scientific Pub., 1995), pp. 315-373.

  49. K. Bergmann, H. Theuer, and B. W. Shore, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys. 70:1003 (1998).

    Google Scholar 

  50. T. Halfmann, L. P. Yatsenko, M. Shapiro, B. W. Shore, and K. Bergmann, Population trapping and laser-induced continuum structure in helium: Experiment and theory, Phys. Rev. A 58:R46 (1998).

    Google Scholar 

  51. J. Martin, B. W. Shore, and K. Bergmann, Coherent population transfer in multilevel systems with magnetic sublevels. 3. Experimental results, Phys. Rev. A 54:1556 (1996).

    Google Scholar 

  52. T. Halfmann and K. Bergmann, Coherent population transfer and dark resonances in SO2, J. Chem. Phys. 104:7068 (1996).

    Google Scholar 

  53. M. N. Kobrak and S. A. Rice, Selective photochemistry via adiabatic passage: An exten sion of stimulated Raman adiabatic passage for degenerate final states, Phys. Rev. A 57:2885 (1998).

    Google Scholar 

  54. M. N. Kobrak and S. A. Rice, Coherent population transfer via a resonance intermediate state: The breakdown of adiabatic passage, Phys. Rev. A 57:1158 (1998).

    Google Scholar 

  55. M. N. Kobrak and S. A. Rice, Equivalence of the Kobrak–Rice photoselective adiabatic passage and the Brumer–Shapiro strong field methods for control of product formation in a reaction, J. Chem. Phys. 109:1 (1998).

    Google Scholar 

  56. E. Charron, A. Giustisuzor, and F. H. Mies, Coherent control of isotopeseparation in HD+ photodissociation by strong fields, Phys. Rev. Lett. 75:2815 (1995).

    Google Scholar 

  57. B. Sheehy, B. Walker, and L. F. DiMauro, Phase control in the two-color photodissocia tion of HD+, Phys. Rev. Lett. 74:4799 (1995).

    Google Scholar 

  58. R. Kosloff, S. A. Rice, P. Gaspard, S. Tersigni, and D. J. Tannor, Wavepacket dancing: Achieving chemical selectivity by shaping light-pulses, Chem. Phys. 139:201 (1989).

    Google Scholar 

  59. A. P. Peirce, M. A. Dahleh, and H. Rabitz, Optimal control of quantum mechanical systems: Existence, numerical approximations, and applications, Phys. Rev. A 37:4950 (1988).

    Google Scholar 

  60. M. A. Dahleh, A. P. Peirce, and H. Rabitz, Optimal control of uncertain quantum systems, Phys. Rev. A 42:1065 (1990).

    Google Scholar 

  61. 10. S. Shi and H. Rabitz, Optimal control of bond selectivity in unimolecular reactions, Comp. Phys. Comm. 63:71 (1991).

    Google Scholar 

  62. P. Gross, D. Neuhauser, and H. Rabitz, Optimal control of curve-crossing systems, J. Chem. Phys. 96:2834 (1992).

    Google Scholar 

  63. D. J. Tannor and S. A. Rice, Coherent pulse sequence control of product formation in chemical reactions, Adv. Chem. Phys. 70:441 (1988).

    Google Scholar 

  64. S. A. Rice, Perspectives on the control of quantum many-body dynamics: Application to chemical reactions, Adv. Chem. Phys. 101:213 (1997).

    Google Scholar 

  65. R. J. Gordon and S. A. Rice, Active control of the dynamics of atoms and molecules, Ann. Rev. Phys. Chem. 48:601 (1997).

    Google Scholar 

  66. M. Zhao and S. A. Rice, Comment concerning the optimal control of transformations in an unbounded quantum system, J. Chem. Phys. 95:2465 (1991).

    Google Scholar 

  67. S. A. Rice, New ideas for guiding the evolution of a quantum system, Science 258:412 (1992).

    Google Scholar 

  68. S. A. Rice and M. Zhao, Optimal control of product selectivity in reactions of polyatomic molecules: A reduced space analysis, in Laser Techniques for State-Selected and State-to-State Chemistry II,J. W. Hepburn, ed., SPIE 2124:246 (1994).

  69. H. Tang, R. Kosloff, and S. A. Rice, A generalized approach to the control of the evolu tion of a molecular system, J. Chem. Phys. 104:5457 (1996).

    Google Scholar 

  70. B. Amstrup, R. J. Carlson, A. Matro, and S. A. Rice, The use of pulse shaping to control the photodissociation of a diatomic molecule: Preventing the best from being the enemy of the good, J. Phys. Chem. 95:8019 (1991).

    Google Scholar 

  71. R. S. Judson and H. Rabitz, Teaching lasers to control molecules, Phys. Rev. Lett. 68:1500 (1992).

    Google Scholar 

  72. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, and G. Berger, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science 282:919 (1998).

    Google Scholar 

  73. M. Demiralp and Rabitz H, Assessing optimality and robustness of control over quantum dynamics, Phys. Rev. A 57:2420 (1998).

    Google Scholar 

  74. D. H. Schirrmeister and V. May, Strong-field approach to ultrafast pump-probe spectra: Dye molecules in solution, Chem. Phys. 220:1 (1997).

    Google Scholar 

  75. D. H. Schirrmeister and V. May, Femtosecond pulse dependence of dissipation in molecular systems, Chem. Phys. Lett. 297:383 (1998).

    Google Scholar 

  76. C. J. Bardeen, V. V. Yakovlev, K. R. Wilson, S. D. Carpenter, P. M. Weber, and W. S. Warren, Feedback quantum control of molecular electronic population transfer, Chem. Phys. Lett. 280:151 (1997).

    Google Scholar 

  77. C. J. Bardeen, J. W. Che, K. R. Wilson, V. V. Yakovlev, P. J. Cong, B. Kohler, J. L. Krause, and M. Messina, Quantum control of NaI photodissociation reaction product states by ultrafast tailored light pulses, J. Phys. Chem. A 101:3815 (1997).

    Google Scholar 

  78. M. Shapiro and P. Brumer, Coherent control of collisional events: Bimolecular reactive scattering, Phys. Rev. Lett. 77:2574 (1996).

    Google Scholar 

  79. P. Brumer and M. Shapiro, Coherent control of bimolecular scattering, Adv. Chem. Phys. 101:295 (1997).

    Google Scholar 

  80. A. Abrashkevich, M. Shapiro, and P. Brumer, Coherent control of reactive scattering, Phys. Rev. Lett. 81:3789 (1998).

    Google Scholar 

  81. J. L. Krause, M. Shapiro, and P. Brumer, Coherent control of bimolecular chemical reactions, J. Chem. Phys. 92:1126 (1990).

    Google Scholar 

  82. D. Holmes, M. Shapiro, and P. Brumer, Coherent control of bimolecular collisions: Collinear reactive scattering, J. Chem. Phys. 105:9162 (1996).

    Google Scholar 

  83. A. Abrashkevich, M. Shapiro, and P. Brumer, Coherent control of reactive scattering, Phys. Rev. Lett. 81:3789 (1998).

    Google Scholar 

  84. P. Brumer, A. Abrashkevich, and M. Shapiro, Laboratory Conditions in the Coherent Control of Reactive Scattering, Disc. Faraday Soc. 183:291 (1999).

    Google Scholar 

  85. N. H. Bonadeo, J. Erland J, D. Gammon, D. Park, D. S. Katzer, and D. G. Steel, Coherent optical control of the quantum state of a single quantum dot, Science 282:1473 (1998).

    Google Scholar 

  86. G. Kurizki, M. Shapiro, and P. Brumer, Phase-coherent control of photocurrent direc tionality in semiconductors, Phys. Rev. B 39:3435 (1989).

    Google Scholar 

  87. E. Dupont, P. B. Corkum, H. C. Liu, M. Buchanan, and Z. R. Wasilewski, Phase-con trolled currents in semiconductors, Phys. Rev. Lett. 74:3596 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rice, S.A. Active Control of Molecular Dynamics: Coherence versus Chaos. Journal of Statistical Physics 101, 187–212 (2000). https://doi.org/10.1023/A:1026422423909

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026422423909

Navigation