Skip to main content
Log in

impact of high aluminium loading on a small catchment area (thuringia slate mining area) – geochemical transformations and hydrological transport

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

A field study was performed on the effects of acid mine leachate from slate mine tailings seeping into a small river passing through the tailings. Before entering the tailings the river water has high alkalinity which neutralizes acidity upon mixing with leachate within the tailings. Downstreams of the tailings the pH of the river water ranges about pH = 8, the water contains high concentrations of sulfate (≈1500 μmol/l) and particulate bound aluminium (≈80 μmol/l), but low concentrations of dissolved aluminium (≈3 μmol/l). It is therefore assumed that Al(OH)3 colloids are precipitated during the neutralisation process and transported out of the tailings. The concentration of particulate bound aluminium along the river shows a strong correlation with the concentration of sulfate, which indicates that particulate bound aluminium is conservative. It therefore seems that under dry weather conditions (under most of the sampling was performed) no chemical retention mechanism exists which confines the distribution of aluminium to a restricted part of the catchment area. In contrast, the white river sediment is rich in both aluminium and sulfate, which suggests the temporary formation of aluminium hydroxosulfate minerals. Favorable (i.e. acidic) conditions may prevail at high discharges where the acidity accumulated in the tailings is flushed into the river with its subsequent acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauer, J., Lehmann, R. and Hamm, A.: 1988, pH-Wert-Veränderungen an ungepufferten Seen und Fließgewässern durch saure Deposition und ökologische Aspekte der Gewässerversauerung, in: Wasserforschung, Bayerische Landesanstalt für (eds.), Gewässerversauerung im nord-und nordostbayerischen Grundgebirge. München, 1-250.

    Google Scholar 

  • Beierkuhnlein, C., Kaupenjohann, M., Sandhage-Hofmann, A. and Peiffer, S.: 1995, ‘Impact of High Aluminium Loadings on a Small Catchment Area in North-East Thuringia as Affected by Acid Mine Drainage’. II. Phytosociological Inventory, Water, Air, and Soil Pollut., in prep.

  • Bencala, K. E., McKnight, D. M. and Zellweger, G. W.: 1987, ‘Evaluation of Natural Tracers in an Acidic and Metal-rich Stream’, Water Res. Res. 23, 827.

    Google Scholar 

  • Borek, S. L.: 1994, ‘Effect of Humidity on Pyrite Oxidation’, in: Alpers, C. N. and Blowes, D. W. (eds.), Environmental Geochemistry of Sulfide Oxidation. Vol. 550, ACS Symposium Series / Washington, 31-44.

    Google Scholar 

  • Caruccio, F. T.: 1973, ‘Estimating the Acid Potential of Coal Mine Refuse’, in: Chadwick, M. J. and Goodman, G. T. (eds.), The Ecology of Resource Degradation and Renewal, Blackwell, Oxford, 197-205.

  • Filipek, L. H., Nordstrom, D. K. and Ficklin, W. H.: 1987, ‘Interaction of Acid Mine Drainage with Waters and Sediments of West Squaw Creek in the West Shasta Mining District’, California, Environ. Sci. Technol. 21, 388.

    Google Scholar 

  • Herrmann, R. and Baumgartner, I.: 1992, ‘Aluminium Species Distribution during Mixing of Acid Coal and Slate Mine Drainage with Neutral StreamWaters’, Geol. Rundschau 81, 759.

    Google Scholar 

  • Herrmann, R., Klemm, K. and Tacken, E.: 1989, ‘Behaviour of Aluminium Species during Snowmelt, both Downstream and after Mixing with Nonacidic Water’, Aqua Fennica 19, 87.

    Google Scholar 

  • Kimball, B. A., Broshears, R. E., Bencala, K. E. and McKnight, D.M.: 1994, ‘Coupling of Hydrological Transport and Chemical Reactions in a Stream Affected by Acid Mine Drainage’, Environ. Sci. Technol. 28, 2065.

    Google Scholar 

  • Liang, L. and Morgan, J. J.: 1990, ‘Chemical Aspects of Iron Oxide Coagulation in Water: Laboratory Studies and Implications for Natural Systems’, Aq. Sciences 52, 32.

    Google Scholar 

  • Liang, L., McCarthy, J. F., Jolley, L. S., McNabb, J. A. and Mehlhorn, T. L.: 1993, ‘Iron Dynamics: Transformation of Fe(II)/Fe(III) during Injection of Natural Organic Matter in a Sandy Aquifer’, Geochim. Cosmochim. Acta 57, 1987.

  • Liebeskind, W. and Lehrieder, E.: 1992, ‘Der Lehester Schieferbergbau - Geschichte, Geologie und Mineralogie’, Aufschluß 43, 139.

    Google Scholar 

  • McKnight, D. M. and Bencala, K. E.: 1990, ‘The chemistry of Iron, Aluminium, and Dissolved OrganicMaterial in Three Acidic, Metal-enriched, Mountain Stream, as Controlled by Watershed and In-stream Processes’, Water Res. Res. 26, 3087.

    Google Scholar 

  • McKnight, D.M. and Feder, G. L.: 1984, ‘The Ecological Effect of Acid Conditions and Precipitation of Hydrous Metal Oxides in a Rocky Mountain Stream’, Hydrobiol. 119, 129.

    Google Scholar 

  • McKnight, D. M., Bencala, K. E., Zellweger, G. W., Aiken, G. R., Feder, G. L. and Thorn, K. A.: 1992, ‘Sorption of Dissolved Organic Carbon by Hydrous Aluminium and Iron Oxides Occurring at the Confluences of Deer Creek with the Snake River’, Summit County, Colorado, Environ. Sci. Technol. 26, 1388.

    Google Scholar 

  • Nordstrom, D. K.: 1982, 'The Effect of Sulfate on Aluminum Concentrations in Natural Waters: some Stability Relations in the System Al2O3-SO3-H2O at 298 K, Geochim. Cosmochim. Acta 46, 681.

    Google Scholar 

  • Nordstrom, D. K. and Ball, J. W.: 1986, ‘The Geochemical Behaviour of Aluminum in Acidified Surface Waters’, Science 232, 54.

    Google Scholar 

  • Parsons, J. D.: 1977, ‘Effects of Acid Mine Water on Aquatic Ecosystems’, Water, Air, and Soil Pollut. 7, 332.

    Google Scholar 

  • Pfeiffer, H.: 1959, ‘Der Oertelsbruch bei Lehesten’, Z. angew. Geol. 9, 399.

    Google Scholar 

  • Prenzel, J.: 1994, ‘Sulfate Sorption in Soils under Acid Deposition: Comparison of Two Modelling Approaches’, J. Environ. Qual. 23, 188.

    Google Scholar 

  • Sandhage-Hofmann, A., Kaupenjohann, M., Peiffer, S. and Beierkuhnlein, C.: 1995, ‘Impact of High Aluminium Loadings on a Small Catchment Area in North-East Thuringia as Affected by Acid Mine Drainage. III. Soil Chemistry and Plant Nutrition’, Water, Air, and Soil Pollut., in prep.

  • Schramel, P., Wolf, A., Seif, R. and Klose, B. J.: 1980, ‘Eine neue Apparatur zur Druckveraschung von biologischem Material’, Fresenius. Z. Anal. Chem 302, 62.

    Google Scholar 

  • Tabatai, M. A.: 1974, ‘Determination of Sulfate in Water Samples’, Sulphur Inst. J. 10, 11.

    Google Scholar 

  • Theobald, P. K., Lakin, H.W. and Hawkins, D. B.: 1963, ‘The Precipitation of Aluminium, Iron, and Manganese at the Junction of Deer Creek with the Snake River in Summit County, Colorado’, Geochim. Cosmochim. Acta 27, 121.

    Google Scholar 

  • van Breemen, N.: 1973, ‘Dissolved Aluminum in Acid Sulfate Soils and in Acid Mine Drainage’, Soil. Sci. Soc. Amer. Proc. 37, 694.

    Google Scholar 

  • Veerhoff, M. and Brümmer, G. W.: 1989, ‘Silicatverwitterung und Tonmineralumwandlung in Waldböden als Folge von Versauerungsprozessen’, Mitteilg. Dtsch. Bodenkundl. Gesellsch. 59, 1203.

    Google Scholar 

  • Zimmermann, E.: 1896, ‘Polster von Moos-Protonema in dem den Lehestener Schieferbruchhalden entsrömenden sulfatreichen Bachwasser’, Naturwiss. Wochenschrift, 444-445.

  • Zimmermann, E.: 1910, ‘Blatt Lehesten. - Erläuterungen zur Geologischen Karte von Preußen und benachbarten Bundesstaaten’, Lieferung 114.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peiffer, S., Beierkuhnlein, C., Sandhage-Hofmann, A. et al. impact of high aluminium loading on a small catchment area (thuringia slate mining area) – geochemical transformations and hydrological transport. Water, Air, & Soil Pollution 94, 401–416 (1997). https://doi.org/10.1023/A:1026415905628

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026415905628

Navigation