Skip to main content
Log in

Hydro-Acoustics of Piezoelectrically Driven Ink-Jet Print Heads

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

The hydrodynamical heart of an ink-jet printer is the print head, in which a large number of miniature valveless pumps are integrated. Each pump, when actuated electrically, delivers exactly one droplet of a specified flight direction, speed and size (drop-on-demand: DOD). In studies of the behaviour of miniature pumps only one pump is usually considered. The issue discussed in this paper is: do size and velocity of a droplet depend on the design of the print head? To answer this question we modelled the print head as a number of identical Helmholtz resonators, all connected to a main supply channel. The main supply channel was connected to the ink reservoir through a hose pillar and was also modelled as a Helmholtz resonator. The behaviour of such a manifold of Helmholtz resonators was analysed in both the frequency and the time domain. The paper concerns the hydro-acoustics and hydrodynamics of piezoelectrically activated ink-jet print heads.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Le, H., Introduction to drop-on-demand ink jet printing. Tutorial Notes. In: Hanson, E. and Anderson, J. (eds), IS&T's Eleventh International Congress on Advances in Non-Impact Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1995) p. VIII.

    Google Scholar 

  2. Nielsen, N.J., History of ThinkJet printhead development. Hewlett-Packard Journal 36(5), May (1985) 4–11.

    Google Scholar 

  3. Allen, R.R., Meyer, J.D. and Knight, W.R., Thermodynamics and hydrodynamics of thermal ink jets. Hewlett-Packard Journal, May (1985) 21–27.

  4. Askeland, R.A., Childers, W.D. and Sperry, W.R., The second-generation thermal inkjet structure. Hewlett-Packard Journal, August (1988) 28–31.

  5. Buskirk, W.A., Hackleman, D.E., Hall, S.T., Kanarek, P.H., Low, R.N., Trueba, K.E. and Van de Poll, R.R., Development of a high-resolution thermal inkjet printhead. Hewlett-Packard Journal, October (1988) 55–61.

  6. O'Horo, M.P., Deshpande, N.V. and Drake, D.J., Drop generation processes in TIJ printheads. In: Hays, D. and Melnyk, A. (eds), IS&T's Tenth International Congress on Advances in Non-Impact Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1994) pp. 418–421.

    Google Scholar 

  7. Poon, C.C. and Lee, F.C., Study of the vapor bubble on an inkjet printhead heater surface. In: Hays, D. and Melnyk, A. (eds), IS&T's Tenth International Congress on Advances in Non-Impact Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1994) pp. 422–426.

    Google Scholar 

  8. Shimoda, J., New bubble jet head technologies used in Canon Color Bubble Jet Printer BJC-70. In: Hays, D. and Melnyk, A. (eds), IS&T's Tenth International Congress on Advances in Non-Impact Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1994) pp. 353–356.

    Google Scholar 

  9. Cornell, R., A theoretical and experimental examination of thermal ink jet nucleation criteria. In: Melnyk, A. and Hopper, M. (eds), S&T's NIP12: International Conference on Digital Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1996) pp. 19–24.

    Google Scholar 

  10. Stemme, E. and Larsson, S.G., The piezoelectric capillary injector. A new hydrodynamical method for dot pattern generation. IEEE Transactions on Electron Devices ED20 (1973) 13–19.

    Google Scholar 

  11. Kurz, H., Tintenstrahldrucker. PHILIPS. Unsere Forschung in Deutschland, Band III. Philips GmbH Forschungslabor, Aachen (1980) pp. 194–196.

    Google Scholar 

  12. Döring, M., Ink-jet printing. Philips Technical Review 40(7) (1982) 192–198.

    Google Scholar 

  13. Rosenstock, G., Erzeugung schnell fliegender tropfen für Tintendrucker mit Hilfe von Druckwellen. PhD Thesis, University of München (1982).

  14. Lee, F.C., Mills, R.N. and Talke, F.E., The application of drop-on-demand ink jet technology to color printing. IBM Journal of Research and Development 28(3) (1984) 307–313.

    Article  Google Scholar 

  15. Bogy, D.B. and Talke, F.E., Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM Journal of Research and Development 28(3) (1984) 314–321.

    Google Scholar 

  16. Bentin, H., Döring, M., Ratke, W. and Rothgordt, U., Physical properties of micro-planar inkdrop generators. Journal of Imaging Technology 12(3) (1986) 152–155.

    Google Scholar 

  17. Shield, T.W., Bogy, D.B. and Talke, F.E., Drop formation by DOD ink-jet nozzles: A comparison of experiment and numerical simulation. IBM Journal of Research and Development 31(1) (1986) 97–110.

    Google Scholar 

  18. Kitahara, T., Ink jet with multi-layer piezoelectric actuator. In: Hanson, E. and Anderson, J. (eds), IS&T's Eleventh International Congress on Advances in Non-Impact Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1995) pp. 346–349.

    Google Scholar 

  19. Burr, R.F., Tence, D.A. and Berger, S.S., Multiple dot size fluidics for phase change piezoelectric ink jets. In: Melnyk, A. and Hopper, M. (eds), IS&T's NIP12: International Conference on Digital Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1996) pp. 12–18.

    Google Scholar 

  20. Usui, M., Development of the new multilayer actuator head (MACH with multi-layer ceramic with hyper-integrated piezo segments). In: Melnyk, A. and Hopper, M. (eds), IS&T's NIP12: International Conference on Digital Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1996) pp. 50–53.

    Google Scholar 

  21. McDonald, M., Scaling of piezoelectric drop-on-demand jets for high resolution applications. In: Melnyk, A. and Hopper, M. (eds), IS&T's NIP12: International Conference on Digital Printing Technologies. The Society for Imaging and Technology, Springfield, VA (1996) pp. 53–56.

    Google Scholar 

  22. Rayleigh, J.W.S., The Theory of Sound, Vol. 2. The MacMillan Company, London (1896), republished by Dover Publications, New York (1945).

    Google Scholar 

  23. Helmholtz, H., On the Sensations of Tone. Longman, Harlow (1885), republished by Dover Publications, New York (1954).

    Google Scholar 

  24. Dijksman, J.F., Hydrodynamics of small tubular pumps. Journal of Fluid Mechanics 139 (1984) 173–191.

    Article  ADS  Google Scholar 

  25. Beasley, J.D., Model for fluid ejection and refill in an impulse drive jet. Photographic Science and Engineering 21(2) (1977) 78–82.

    MathSciNet  Google Scholar 

  26. Eggers, J. and Dupont, T.F., Drop formation in a one-dimensional approximation of the Navier-Stokes equation. Journal of Fluid Mechanics 262 (1994) 205–221.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  27. Eggers, J., Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics 69(3) (1997) 865–930.

    Article  ADS  Google Scholar 

  28. Badie, R. and De Lange, D.F., Mechanism of drop constriction in a drop-on-demand inkjet system. Proceedings of the Royal Society of London (A) 452 (1997) 2573–2581.

    Article  ADS  Google Scholar 

  29. Landau, L.D. and Lifshitz, E.M., Fluid Mechanics. Course of Theoretical Physics, Vol. 6. Pergamon Press, Oxford (1978) Chapter VII.

    Google Scholar 

  30. Thomson, J.T., Theory of Vibration with Applications. George Allen & Unwin, London (1981).

    MATH  Google Scholar 

  31. Bird, R.B., Armstrong, R.C. and Hassager, O., Dynamics of Polymeric Liquids, Vol. 1, second edition. John Wiley & Sons, New York (1987).

    Google Scholar 

  32. Kundu, P.K., Fluid Mechanics. Academic Press, San Diego, CA (1990) pp. 284–287.

    MATH  Google Scholar 

  33. Rosenhead, L., Laminar Boundary Layers. Clarendon Press, Oxford (1963) pp. 136–139.

    MATH  Google Scholar 

  34. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids. Oxford University Press, Oxford (1959) pp. 64–68.

    Google Scholar 

  35. European Patent Application EP95933599.3-2304, 25 October 1995.

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dijksman, J. Hydro-Acoustics of Piezoelectrically Driven Ink-Jet Print Heads. Flow, Turbulence and Combustion 61, 211–237 (1998). https://doi.org/10.1023/A:1026410705737

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026410705737

Navigation