Pharmaceutical Research

, Volume 17, Issue 9, pp 1092–1097 | Cite as

Evaluation of a Human Bio-Engineered Skin Equivalent for Drug Permeation Studies

  • Charles Asbill
  • Nanhye Kim
  • Ayman El-Kattan
  • Kim Creek
  • Philip Wertz
  • Bozena Michniak


Purpose. To test the barrier function of a bio-engineered human skin (BHS) using three model drugs (caffeine, hydrocortisone, and tamoxifen) in vitro. To investigate the lipid composition and microscopic structure of the BHS.

Methods. The human skin substitute was composed of both epidermal and dermal layers, the latter having a bovine collagen matrix. The permeability of the BHS to three model drugs was compared to that obtained in other percutaneous testing models (human cadaver skin, hairless mouse skin, and EpiDerm™). Lipid analysis of the BHS was performed by high performance thin layered chromatrography. Histological evalulation of the BHS was performed using routine H&E staining.

Results. The BHS mimicked human skin in terms of lipid composition, gross ultrastructure, and the formation of a stratum corneum. However, the permeability of the BHS to caffeine, hydrocortisone, and tamoxifen was 3-4 fold higher than that of human cadaver skin.

Conclusions. In summary, the results indicate that the BHS may be an acceptable in vitro model for drug permeability testing.

drug delivery systems skin alternatives transdermal drug delivery permeability 


  1. 1.
    R. L. Bronaugh and H. I. Maibach. In Vitro Percutaneous Absorption: Principles, Fundamentals and Applications, Boca Raton, Fl, CRC Press (1991).Google Scholar
  2. 2.
    R. Panchagnula, K. Stemmer, and W. A. Ritschel. Animal models for transdermal drug delivery. Methods Find Exp. Clin. Pharmacol. 19:335–341 (1997).Google Scholar
  3. 3.
    M. Ponec, M. Haverkort, Y. L. Soei, J. Kempenaar, and H. Bodde. Use of human keratinocyte and fibroblast cultures for toxicity studies of topically applied compounds. J. Pharm. Sci. 79:312–316 (1990).Google Scholar
  4. 4.
    D. A. Godwin, B. B. Michniak, and K. E. Creek. Evaluation of transdermal penetration enhancers using a novel skin alternative. J. Pharm. Sci. 86: 1001–1005 (1997).Google Scholar
  5. 5.
    I. V. Yannas, J. F. Burke, M. Warpehoski, P. Stasikelis, E. M. Skrabut, and D. P. Orgill. Design principles and preliminary clincial performance of an artificial skin. In Biomaterials: Interfacial Phenomena and Applications. 1982, pp. 476–481.Google Scholar
  6. 6.
    J. F. Morgan and M. L. Yarmush. Bioengineered skin substitutes. Science & Medicine. 6–15 (1997).Google Scholar
  7. 7.
    M. Muhart, S. McFalls, R. Kirsner, F. Kerdel, and W. H. Eaglstein. Bioengineered skin [letter]. Lancet. 350:1142 (1997).Google Scholar
  8. 8.
    T. J. Phillips. New skin for old: Developments in biological skin substitutes [editorial; comment]. Arch. Dermatol. 134:344–349 (1998).Google Scholar
  9. 9.
    J. F. Trent, R. S. Kirsner. Tissue engineered skin: Apligraf, a bilayered living skin equivalent. Int. J. Clin. Pract. 52:408–413 (1998).Google Scholar
  10. 10.
    J. G. Rheinwald and H. Green. Serial cultivation of strains of human epidermal keratinocytes. The formation of keratinizing colonies from single cells. Cell 6:331–343 (1975).Google Scholar
  11. 11.
    E. Bell, H. P. Ehrlich, D. J. Buttle and T. Nakatsuji. Living tissue formed in vitro and accepted as skin-equivalent tissue of full thickness. Science 211: 1052–1054 (1981).Google Scholar
  12. 12.
    M. Rosdy, B. Grisoni, and L. C. Clauss. Proliferation of normal human keratinocytes on silicone substrates. Biomaterials 12:511–517 (1991).Google Scholar
  13. 13.
    V. H. Mak, M. B. Cumpstone, A. H. Kennedy, C. S. Harmon, R. H. Guy, and R. O. Potts. Barrier function of human keratinocyte cultures grown at the air-liquid interface. J. Invest. Dermatol. 96:323–327 (1991).Google Scholar
  14. 14.
    N. Kim, M. El-Khalili, M. M. Henary, L. Strekowski, and B. B. Michniak. Percutaneous penetration enhancement activity of aromatic S, S-dimethyliminosulfuranes. Int. J. Pharm. 187:219–229 (1999).Google Scholar
  15. 15.
    B. B. Michiak, M. R. Player, J. M. Chapman, and J. W. Sowell. In vitro evaluation of a seies of Azone analogs as dermal penetration enhancers: I. Int. J. Pharm. 91:85–93 (1993).Google Scholar
  16. 16.
    L. C. Fuhrman, B. B. Michniak, C. R. Behl, and A. W. Malick. Effect of novel penetration enhancers on the transdermal delivery of hydrocortisone: an in vitro species comparison. J. Control. Rel. 45:197–204 (1996).Google Scholar
  17. 17.
    I. H. Blank, R. J. Scheuplein, and D. J. MacFarlane. Mechanism of percutaneous absorption. 3. The effect of temperature on the transport of non-electrolytes across the skin. J. Invest. Dermatol. 49:582–589 (1967).Google Scholar
  18. 18.
    C. A. Squier, P. Cox, and P. W. Wertz. Lipid content and water permeability of skin and oral mucosa. J. Invest. Dermatol. 96:123–126 (1991).Google Scholar
  19. 19.
    D. T. Downing, M. E. Stewart, P. W. Wertz, S. W. Colton, W. Abraham, and J. S. Strauss. Skin lipids: an update. J. Invest. Dermatol. 88:2s–6s (1987).Google Scholar
  20. 20.
    P. W. Wertz and D. T. Dowing. Stratum Corneum: Biological and biochemical considerations. In Transdermal Drug Delivery, J. Hadgraft and Richard H. Guy. Eds, Markel Dekker Inc., New York, 1989, pp. 1–22.Google Scholar
  21. 21.
    M. Ponec, A. Weerheim, J. Kempenaar, A. M. Mommaas, and D. H. Nugteren. Lipid composition of cultured human keratinocytes in relation to their differentiation. J. Lipid Res. 29:949–961 (1988).Google Scholar
  22. 22.
    M. Ponec. Reconstruction of human epidermis on deepidermized dermis: Expression of differentiation-specific protein markers and lipid composition, Toxicol. in Vitro. 5:597–606 (1991a).Google Scholar
  23. 23.
    P. W Wertz, and D. T. Downing. Glucosylceramides of pig epidermis: Structure determination. J. Lipid Res. 24:1135–1139 (1983).Google Scholar
  24. 24.
    P. W. Wertz and D. T. Downing. Acylglucosylceramides of pig epidermis: structure determination. J. Lipid Res. 24:753–758 (1983).Google Scholar

Copyright information

© Plenum Publishing Corporation 2000

Authors and Affiliations

  • Charles Asbill
    • 1
  • Nanhye Kim
    • 1
  • Ayman El-Kattan
    • 1
  • Kim Creek
    • 2
  • Philip Wertz
    • 3
  • Bozena Michniak
    • 4
  1. 1.Department of Basic Pharmaceutical Sciences, College of PharmacyUniversity of South Carolina
  2. 2.Children's Cancer Research Laboratory, Department of Pediatrics and Department of PathologyUniversity of South Carolina School of Medicine
  3. 3.Dows InstituteUniversity of Iowa
  4. 4.Department of Basic Pharmaceutical Sciences College of PharmacyUniversity of South CarolinaColumbia

Personalised recommendations