Skip to main content
Log in

Kinetics of the Crystal 4He Growth at High Overpressurizations

  • Published:
Journal of Low Temperature Physics Aims and scope Submit manuscript

Abstract

The growth of a helium crystal is studied within the temperature range of 0.4–1.7 K at the overpressurizations up to 15 mbar. The measurements are carried out in the opaque and optical containers. In the first case the growth rate is evaluated from the rate of pressure change inside the container during crystal growth. This yields the growth rate averaged over all crystallographic directions. In the optical container the direct filming of a crystal growth process complements the pressure measurements. At high temperatures the absolute values of the kinetic growth coefficient K for the bcc-phase are measured. For the hcp-phase, at high overpressurizations above both roughening transitions the growth rate anisotropy is observed. At high overpressurizations the point of the first roughening transition is found to shift towards lower temperature while the temperature of the second roughening transition increases. Below the second roughening transition, two growth regimes are found. The first one (normal) is typical for a crystal close to the phase equilibrium. The second regime occurs at high overpressurizations. In this case the crystal growth time decreases by two orders of the magnitude in comparison with the normal one. The phase diagram separating regions of the fast and slow growth of a 4He crystal is determined. The lifetime of the metastable state under fast kinetics is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. A. Chernov, Modern Crystallography [in Russian], Vol. 4, Nauka, Moscow (1980).

    Google Scholar 

  2. F. Gallet and P. Nozieres, J. de Physique 48, 353 (1987).

    Google Scholar 

  3. A. F. Andreev and A. Ya. Parshin, Sov. Phys. JETP 48, 763 (1978).

    Google Scholar 

  4. R. M. Bowley and D. O. Edwards, J. de Physique 44, 723 (1983).

    Google Scholar 

  5. D. O. Edwards, S. Mukherjee, and M. S. Pettersen, Phys. Rev. Lett. 64, 902 (1990).

    Google Scholar 

  6. J. A. Avron, L. S. Balfour, C. G. Kuper, J. Landau, S. G. Lipson, and L. S. Schulman, Phys. Rev. Lett. 45, 814 (1980).

    Google Scholar 

  7. S. Balibar and B. Castaing, J. de Phys. Lett. 41, 329 (1980).

    Google Scholar 

  8. A. V. Babkin, K. O. Keshishev, and A. Ya. Parshin, Sov. Phys. JETP 52, 362 (1981).

    Google Scholar 

  9. S. Balibar, F. Gallet, and P. E. Wolf, Phys. Rev. Lett. 51, 1366 (1983).

    Google Scholar 

  10. S. Balibar, F. Gallet, P. Nozieres, E. Rolley, and P. E. Wolf, J. de Physique 46, 1987 (1985).

    Google Scholar 

  11. S. Balibar, F. Gallet, and E. Rolley, J. de Physique 48, 369 (1987).

    Google Scholar 

  12. V. L. Tsymbalenko, Ukr. Low Temp. Phys. 21, 120 (1995).

    Google Scholar 

  13. A. V. Babkin, P. J. Hakonen, A. Ya. Parshin, J. P. Ruutu, and G. Tvalashvili, J. Low Temp. Phys. 112, 117 (1998).

    Google Scholar 

  14. S. Balibar, F. Gallet, P. Nozieres, and E. Rolley, Europhys. Lett. 2, 701 (1986).

    Google Scholar 

  15. A. F. Andreev, in Quantum Theory of Solids, I. M. Lifshits (ed.), MIR publisher, Moscow, p. 11 (1982).

    Google Scholar 

  16. V. L. Tsymbalenko, Phys. Lett. A 211, 177 (1996).

    Google Scholar 

  17. V. L. Tsymbalenko, Phys. Lett. A 248, 267 (1998).

    Google Scholar 

  18. V. L. Tsymbalenko, Phys. Lett. A 257, 209 (1999).

    Google Scholar 

  19. V. L. Tsymbalenko, Instr. Exp. Tech. 40, 161 (1997).

    Google Scholar 

  20. L. A. Maksimov and V. L. Tsymbalenko, JETP 87, 714 (1998).

    Google Scholar 

  21. V. L. Tsymbalenko, Cryogenics 36, 65 (1996).

    Google Scholar 

  22. V. L. Tsymbalenko, J. Low Temp. Phys. 88, 55 (1992).

    Google Scholar 

  23. A. V. Babkin, P. J. Hakonen, J. S. Penttila, J. P. Ruutu, J. P. Saramaki, and E. B. Sonin, Phys. Rev. Lett. 77, 2514 (1996).

    Google Scholar 

  24. V. L. Tsymbalenko, Instr. Exp. Tech. 42, 215 (1999).

    Google Scholar 

  25. J. Bodensohn, P. Leiderer, and K. Nicolai, Z. Phys. B 64, 55 (1986).

    Google Scholar 

  26. P. Nozieres and M. Uwaha, J. de Physique 48, 389 (1987).

    Google Scholar 

  27. O. A. Andreeva, K. O. Keshishev, and S. Yu. Osip'yan, JETP Lett. 49, 759 (1989).

    Google Scholar 

  28. S. Balibar, B. Castaing, and C. Laroche, J. de Physique 41, 897 (1980).

    Google Scholar 

  29. S. V. Iordanskii and S. E. Korshunov, Sov. Phys. JETP 87, 927 (1984).

    Google Scholar 

  30. V. L. Tsymbalenko, Phys. Lett. A 274, 223 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsymbalenko, V.L. Kinetics of the Crystal 4He Growth at High Overpressurizations. Journal of Low Temperature Physics 121, 53–79 (2000). https://doi.org/10.1023/A:1026404509218

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026404509218

Keywords

Navigation