Skip to main content
Log in

Cellular Basis of Pontine Ponto-geniculo-occipital Wave Generation and Modulation

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. Pontogeniculooccipital (PGO) waves are recorded during rapid eye movement (REM) sleep from the pontine reticular formation.

2. PGO wave-like field potentials can also be recorded in many other parts of the brain in addition to the pontine reticular formation, but their distribution is different in different species. Species differences are due to variation in species-specific postsynaptic target sites of the pontine PGO generator.

3. The triggering neurons of the pontine PGO wave generator are located within the caudolateral peribrachial and the locus subceruleus areas.

4. The transferring neurons of the pontine PGO generator are located within the cholinergic neurons of the laterodorsal tegmentum and the pedunculopontine tegmentum.

5. The triggering and transferring neurons of the pontine PGO wave generator are modulated by aminergic, cholinergic, nitroxergic, GABA-ergic, and glycinergic cells of the brainstem. The PGO system is also modulated by suprachiasmatic, amygdaloid, vestibular, and brainstem auditory cell groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Ahlsen, G. (1984). Brain stem neurons with differential projections to functional subregions of the dorsal lateral geniculate complex in the cat. Neuroscience 12:817–838.

    Google Scholar 

  • Armstrong, D. A., Saper, C. B., Levey, A. I., Wainer, B. H., and Terry, R. D. (1983). Distribution of cholinergic neurons in the rat brain demonstrated by the immunohistochemical localization of choline-acetyltransferase. J. Comp. Neurol. 200:53–63.

    Google Scholar 

  • Aston-Jones, G., and Bloom, F. E. (1981a). Activity of norepinephrine-containing locus coeruleus neurons in behaving rats anticipates fluctuations in the sleep-waking cycle. J. Neurosci. 1:876–886.

    Google Scholar 

  • Aston-Jones, G., and Bloom, F. E. (1981b). Norepinephrine-containing locus coeruleus neurons in behaving rats exhibit pronounced responses to non-noxious environmental stimuli. J. Neurosci. 1:887–900.

    Google Scholar 

  • Aston-Jones, G., Ennis, M., Pieribone, V. A., Nickell, W. T., and Shipley, M. T. (1986). The brain nucleus locus coeruleus: Restricted afferent control of a broad efferent network. Science 234:734–737.

    Google Scholar 

  • Baghdoyan, H. A., Monaco, A. P., Rodrigo-Angulo, M. L., Assens, F., McCarley, R. W., and Hobson, J. A. (1984). Microinjection of neostigmine into the pontine reticular formation of cats enhances desynchronized sleep signs. J. Pharmacol. Exp. Ther. 231:173–180.

    Google Scholar 

  • Ball, W. A., Sanford, L. D., Morrison, A. R., Ross, R. R., Hunt, W. H., and Mann, G. L. (1991). The effect of changing state on elicited ponto-geniculo-occipital (PGO) waves. Electroenceph. Clin. Neurophys. 79:420–429.

    Google Scholar 

  • Baust, W., Holzbach, E., and Zechlin, O. (1972). Phasic changes in heart rate and respiration correlated with PGO-spike activity during REM sleep. Pfluegers Arch. 331:113–123.

    Google Scholar 

  • Bizzi, E., and Brooks, D. C. (1963). Functional connections between pontine reticular formation and lateral geniculate nucleus during sleep sleep. Arch. Ital. Biol. 101:666–680.

    Google Scholar 

  • Bobillier, P., Seguin, S., Petitjean, F., Salvert, D., Touret, M., and Jouvet, M. (1976). The raphe nuclei of the cat brain stem: A topographical atlas of their efferent projections as revealed by autoradiography. Brain Res. 113:449–486.

    Google Scholar 

  • Bowe-Anders, C., Adrien, J., and Roffwarg, H. P. (1974). Ontogenesis of pontogeniculo-occipital activity in the lateral geniculate nucleus during deep sleep. Exp. Neurol. 43:242–260.

    Google Scholar 

  • Bowker, R. M., and Morrison, A. R. (1976). The startle reflex and PGO spikes. Brain Res. 102:185–190.

    Google Scholar 

  • Bowker, R. M., and Morrison, A. R. (1977). The PGO spikes: An indicator of hyperalertness. In Sleep Research, (W. P. Koella and P. Levin, Eds.), Karger, Basel, pp. 23–77.

    Google Scholar 

  • Bredt, D. S., and Snyder, S. H. (1992). Nitrix oxide, a novel neuronal messenger. Neuron 8:3–11.

    Google Scholar 

  • Bredt, D. S., Huang, P. M., and Snyder, S. H. (1990). Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770.

    Google Scholar 

  • Bredt, D. S., Glatt, C. E., Hwang, P. M., Fotuhi, M., Dawson, T. M., and Snyder, S. H. (1991). Nitric oxide synthase protein and mRNA are discretely localized in neuronal populations of the mammalian CNS together with NADPH diaphorase. Neuron 7:615–624.

    Google Scholar 

  • Brooks, D. C. (1967a). Localization of the lateral geniculate nucleus monophasic waves associated with paradoxical sleep in the cat. Electroenceph. Clin. Neurophysiol. 23:123–133.

    Google Scholar 

  • Brooks, D. C. (1967b). Effect of bilateral optic nerve section on visual system monophasic wave activity in the cat. Electroenceph. Clin. Neurophysiol. 23:134–141.

    Google Scholar 

  • Brooks, D. C. (1968a). Waves associated with eye movements in the awake and sleeping cat. Electroencephalogr. Clin. Neurophysiol. 24:532–541.

    Google Scholar 

  • Brooks, D. C. (1968b). Localization and characteristics of the cortical waves associated with eye movements in the cat. Exp. Neurol. 22:603–613.

    Google Scholar 

  • Brooks, D. C., and Bizzi, E. (1963). Brain stem electrical activity during deep sleep. Arch. Ital. Biol. 101:648–665.

    Google Scholar 

  • Brooks, D. C., and Gershon, M. D. (1971). Eye movement potentials in the oculomotor and visual systems of the cat: a comparison of reserpine induced waves with those present during wakefulness and rapid eye movement sleep. Brain Res. 27:223–239.

    Google Scholar 

  • Brooks, D. C., and Gershon, M. D. (1977). Amine repletion in the reserpinized cat: Effect upon PGO waves and REM sleep. Electroenceph. Clin. Neurophysiol. 42:35–47.

    Google Scholar 

  • Brooks, D. C., Gershon, M. D., and Simon, R. P. (1972a). An analysis of the effects of reserpine upon pontogeniculooccipital wave activity in the cat. Neuropharmacology 11:499–510.

    Google Scholar 

  • Brooks, D. C., Gershon, M. D., and Simon, R. P. (1972b). Brain stem serotonin depletion and ponto-geniculooccipital wave activity in the cat treated with reserpine. Neuropharmacology 11:511–520.

    Google Scholar 

  • Callaway, C. W., Lydic, R., Baghdoyan, H. A., and Hobson, J. A. (1987). Pontogeniculooccipital waves: Spontaneous visual system activity during rapid eye movement sleep (review and commentary). Cell. Mol. Neurobiol. 7:105–148.

    Google Scholar 

  • Calvo, J. M., and Fernandez-Guardiola, A. (1984). Phasic activity of the basolateral amygdala, cingulate gyrus and hippocampus during REM sleep in the cat. Sleep 7:202–210.

    Google Scholar 

  • Calvo, J. M., and Simon-Areco, K. (1995). Long-lasting enhancement of REM sleep induced by carbachol microninection into the central amygdaloid nucleus of the cat. Sleep Res. 24A:17.

    Google Scholar 

  • Calvo, J. M., Badillo, S., Morales-Ramirez, M., and Palacios-Salas, P. (1987). The role of temporal lobe amygdala in ponto-geniculo-occipital activity and sleep organization in cats. Brain Res. 403:22–30.

    Google Scholar 

  • Calvo, J. M., Datta, S., Quattrochi, J., and Hobson, J. A. (1992). Cholinergic microstimulation of the peribrachial nucleus in the cat. II. Delayed and prolonged increases in REM sleep. Arch. Ital. Biol. 130:285–301.

    Google Scholar 

  • Cespuglio, R., Gomez, M. E., Walker, E., and Jouvet, M. (1979). Effets du refroidessement et de la stimulation des noyaux du systeme du raphe sur les etats de vigilance chez le chat. Electroenceph. Clin. Neurophysiol. 47:289–308.

    Google Scholar 

  • Cespuglio, R., Gomez, M. E., Faradji, H., and Jouvet, M. (1982). Alterations in the sleep-waking cycle induced by cooling of the locus coeruleus area. Electroenceph. Clin. Neurophysiol. 54:570–578.

    Google Scholar 

  • Chu, N. S., and Bloom, F. E. (1973). Norepinephrine-containing neurons: Changes in spontaneous discharge patterns during sleeping and waking. Science 179:908–910.

    Google Scholar 

  • Chu, N. S., and Bloom, F. E. (1974). Activity patterns of catecholamine-containing pontine neurons in the dorsolateral tegmentum of unrestrained cats. J. Neurobiol. 5:527–544.

    Google Scholar 

  • Cohen, B., and Feldman, M. (1968). Relationship to electrical activity in the pontine reticular formation and lateral geniculate body to rapid eye movements. J. Neurophysiol. 31:807–817.

    Google Scholar 

  • Crick, E., and Mitchison, G. (1983). The function of dream sleep. Nature 304:111–114.

    Google Scholar 

  • Crutcher, M. D., Turner, R. S., Perez, J., and Rye, D. B. (1994). Relationship of the primate pedunculopontine nucleus (PPN) to tegmental connections with the internal pallidum (GPi). Soc. Neurosci. Abstr. 20:334.

    Google Scholar 

  • Cuello, A. C., and Sofroniew, M. V. (1984). The anatomy of the CNS cholinergic neurons. Trends. Neurosci. 7:74–78.

    Google Scholar 

  • Datta, S. (1995). Neuronal activity in the peribrachial area: Relationship to behavioral state control. Neurosci. Biobehav. Rev. 19:67–84.

    Google Scholar 

  • Datta, S., and Hobson, J. A. (1995). Suppression of ponto-geniculo-occipital waves by neurotoxic lesions of pontine caudo-lateral peribrachial cells. Neuroscience 67:703–712.

    Google Scholar 

  • Datta, S., and Hobson, J. A. (1994). Neuronal activity in the caudo-lateral peribrachial pons: Relationship to PGO waves and rapid eye movements. J. Neurophysiol. 71:95–109.

    Google Scholar 

  • Datta, S., Quattrochi, J. J., and Hobson, J. A. (1993). Effect of specific muscarinic M2 receptor antagonist on carbachol induced long-term REM sleep. sleep 16:8–14.

    Google Scholar 

  • Datta, S., Calvo, J. M., Quatrochi, J. J., and Hobson, J. A. (1992). Cholinergic microstimulation of the peribrachial nucleus in the cat. I. immediate and prolonged increases in ponto-geniculo-occipital waves. Arch. Ital. Biol. 130:263–284.

    Google Scholar 

  • Datta, S., Calvo, J. M., Quatrochi, J. J., and Hobson, J. A. (1991a). Long-term enhancement of REM sleep following cholinergic stimulation. NeuroReport 2:619–622.

    Google Scholar 

  • Datta, S., Currodossi, R., Pare, D., Oakson, G., and Steriade, M. (1991b). Substantia nigra reticulata neurons during sleep-waking states: Relation with ponto-geniculo-occipital waves. Brain Res. 566:344–347.

    Google Scholar 

  • Datta, S., Pare, D., Oakson, G., and Steriade, M. (1989). Thalamic-projecting neurons in brainstem cholinergic nuclei increases their firing rates one minute in advance of EEG desynchronization associated with REM sleep. Soc. Neurosci. Abstr. 15:452.

    Google Scholar 

  • Davenne, D., and Adrien, J. (1984). Suppression of PGO waves in the kitten: Anatomical effects on the lateral geniculate nucleus. Neurosci. Lett. 45:33–38.

    Google Scholar 

  • DeLima, A. D., and Singer, W. (1987). The brainstem projection to the lateral geniculate nucleus in the cat: Identification of cholinergic and monoaminergic elements. J. Comp. Neurol. 259:92–121.

    Google Scholar 

  • Delorme, F., Jeannerod, M., and Jouvet, M. (1965). Effects remarquables de la reserpine sur lactivite EEG phasique ponto-geniculo-occipitale. C.R. Soc. Biol. 159:900–904.

    Google Scholar 

  • Delorme, F., Froment, J. L., and Jouvet, M. (1966). Suppression du sommeil par la p-chlormethamphetamine et la p-chlorphenylalanine. C.R. Soc. Biol. 160:2347–2351.

    Google Scholar 

  • Dement, W., Ferguson, J., Cohen, H., and Barchasa, J. (1969). Nonchemical methods and data using a biochemical model: The REM quanta. In Psychochemical Research in Man: Methods, Strategy and Theory (A. J. Mandel and M. P. Mandel, Eds.), Academic, New York, pp. 275–325.

    Google Scholar 

  • Drucker-Colin, R., Bernal-Pedraza, J., Fernandez-Cancino, F., and Morrison, A. R. (1983). Increasing PGO spike density by auditory stimulation increases the duration and decreases the latency of rapid eye movement (REM) sleep. Brain Res. 278:308–312.

    Google Scholar 

  • Duysan-Peyrethon, D., Peynethon, J., and Jouvet, M. (1967). Etude quantitative des phenomenesphasiques du sommeil paradoxal pendent et apres sa deprivation instrumentale. C.R. Soc. Biol. Paris 161:2530–2533.

    Google Scholar 

  • El-Mansari, M., Sakai, K., and Jouvet, M. (1989). Unitary characteristics of presumptive cholinergic tegmental neurons during the sleep-waking cycle in freely moving cats. Exp. Brain Res. 76:519–529.

    Google Scholar 

  • Ennis, M., and Aston-Jones, G. (1989). GABA-mediated inhibition of locus coeruleus from the dorsomedial rostral medulla. J. Neurosci. 9:2973–2981.

    Google Scholar 

  • Fallon, J. H., and Ciofi, P. (1992). Neurobiological aspects of emotion, memory and mental dysfunction. In The Amygdala (J. P. Aggleton, Ed.), Wiley-Liss, New York, pp. 97–114.

    Google Scholar 

  • Farber, J., Marks, G. A., and Roffwarg, H. P. (1980). Rapid eye movement sleep PGO-type waves are present in the dorsal pons of the albino rat. Science 209:615–617.

    Google Scholar 

  • Feldman, M., and Cohen, B. (1968). Electrical activity in the lateral geniculate body of the alert monkey associated with eye movements. J. Neurophysiol. 31:455–466.

    Google Scholar 

  • Foote, S. L. (1973). Compensatory changes in REM sleep time of cats during ad libitum sleep and following brief REM sleep deprivation. Brain Res. 54:261–276.

    Google Scholar 

  • Foote, S. L., Bloom, F. E., and Aston-Jones, G. (1983). Nucleus locus ceruleus: New evidence of anatomical and physiological specificity. Physiol. Rev. 63:844–914.

    Google Scholar 

  • Fort, P., Luppi, P. H., and Jouvet, M. (1993). Glycine-immunoreactive neurons in the cat brain stem reticular formation. NeuroReport 4:1123–1126.

    Google Scholar 

  • Fulwiler, C. E., and Saper, C. B. (1984). Subnuclear organization of the efferent connections of the parabrachial nucleus in the rat. Brain Res. Rev. 7:229–259.

    Google Scholar 

  • Garthwaite, J. (1991). Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 14:60–67.

    Google Scholar 

  • Gilbert, K. A., and Lydic, R. (1990). Parabrachial neuron discharge in the cat altered during the carbachol induced REM sleep-like state (D-Carb). Neurosci. Lett. 120:241–244.

    Google Scholar 

  • Gillin, J. C., Sitaram, N., Janowsky, D., RIsch, C., Huey, L., and Storch, F. I. (1985). Cholinergic mechanisms in REM Sleep. In Sleep: Neurotransmitters and Neuromodulators (A. Wauqier, Ed.), Raven Press, New York.

    Google Scholar 

  • Gottesman, C. (1969). Etude sur les activities electrophysiologiques phasiques chez la rat. Physiol. Behav. 4:495–504.

    Google Scholar 

  • Hallanger, A. E., and Wainer, B. H. (1988). Ascending projections from the pedunculopontine tegmental nucleus and the adjacent mesopontine tegmentum in the rat. J. Comp. Neurol. 274:483–515.

    Google Scholar 

  • Hallanger, A. E., Levey, A. I., Lee, H. J., Rye, D. B., and Wainer, B. H. (1987). The origins of cholinergic and other subcortical afferents to the thalamus in the rat. J. Comp. Neurol. 262:105–124.

    Google Scholar 

  • Harandi, M., Aguera, M., Gamrani, H., Didier, M., Maitre, M., Calas, A., and Belin, M. F. (1987). GABA and 5-hydroxytryptamine interrelationship in the rat nucleus raphe dorsalis: Combination of radioautographic and immunocytochemical techniques at light and electron microscopy levels. Neuroscience 21:237–251.

    Google Scholar 

  • Henriksen, S. J., Jacobs, B. L., and Dement, W. C. (1972). Dependence of REM sleep PGO waves on cholinergic mechanisms. Brain Res. 48:412–416.

    Google Scholar 

  • Hobson, J. A. (1964a). The effects of chronic brainstem lesions on cortical and muscular activity during sleep and waking in cat. Electroencephalogr. Clin. Neurophysiol. 19:41–62.

    Google Scholar 

  • Hobson, J. A. (1964b). L'activite electrique phasique du cortex et du thalmus au cours du sommeil desynchronise chez le chat. C.R. Soc. Biol. 158:2131–2135.

    Google Scholar 

  • Hobson, J. A., and McCarley, R. W. (1977). The brain as a dream state generator: the activation-synthesis hypothesis of the dream process. Am. J. Psychiatry 134:1335–1384.

    Google Scholar 

  • Hobson, J. A., and Steriade, M. (1986). Neuronal basis of behavioral state control. In Handbook of Physiology, Section I: The Nervous System (V. B. Mountcastle, F. E. Bloom and S. R. Geiger, Eds.), Am. Physiol. Soc., Bethesda, Vol IV, pp. 701–823.

    Google Scholar 

  • Hobson; J. A., McCarley, R. W., and Wyzinski, P. W. (1975). Sleep cycle oscillations: Reciprocal discharge by two brainstem neuronal groups. Science 189:55–58.

    Google Scholar 

  • Hope, B., Michael, G., Knigge, K., and Vincent, S. (1991). Neuronal NADPH diaphorase is a nitric oxide synthase. Proc. Natl. Acad. Sci. USA 88:2811–2814.

    Google Scholar 

  • Hosino, K., Pompeiano, O., Magherini, P. C., and Mergner, T. (1976). The oscillatory system responsible for the oculomotor activity during the bursts of REM. Arch. Ital. Biol. 114:278–309.

    Google Scholar 

  • Houser, C. R., Crawford, G. D., Barber, R. P., Salvaterra, P. M., and Vaughn, J. E. (1983). Organization and morphological characteristics of cholinergic neurons: An immunohistochemical study with a monoclonal antibody to choline acetyltransferase. Brain Res. 266:97–119.

    Google Scholar 

  • Isaacson, L. G., and Tanaka, D., Jr. (1986). Cholinergic and non-cholinergic projections from the canin pontomesencephalic tegmentum (Ch5 area) to the caudal intralaminar thalamic nuclei. Exp. Brain Res. 62:179–188.

    Google Scholar 

  • Jacobs, B. L. (1986). Single unit activity of locus coeruleus neurons in behaving animals. Prog. Neurobiol. 27:183–194.

    Google Scholar 

  • Jacobs, B. L., Henriksen, S. J., and Dement, W. C. (1972). Neurochemical basis of the PGO wave. Brain Res. 48:406–411

    Google Scholar 

  • Jones, B. E. (1991). Paradoxical sleep and its chemical/structural substrates in the brain. Neuroscience 40:637–656.

    Google Scholar 

  • Jones, B. E., and Beaudet, A. (1987). Distribution of acetylcholine and catecholamine neurons in the cat brain stem studied by choline acetyl-transferase and tyrosine hydroxylase immunohistochemistry. J. Comp. Neurol. 261:15–32.

    Google Scholar 

  • Jones, B. E., and Yang, T. Z. (1985). The efferent projections from the reticular formation and the locus coeruleus studied by anterograde and retrograde axonal transport in the rat. J. Comp. Neurol. 242:56–92.

    Google Scholar 

  • Jouvet, M., Michel, F., and Courjon, J. (1959). L'activite electrique du rhinencephale au cours du sommeil chez le chat. C.R. Soc. Biol. 153:101–105.

    Google Scholar 

  • Jouvet, M., Jeannerod, M., and Delorme, F. (1965). Organisation du systeme responsable de lactivite phasique au cours du sommeil paradoxal. C.R. Soc. Biol. 159:1599–1604.

    Google Scholar 

  • Kahn, D., and Hobson, J. A. (1993). Self-organization theory of dreaming. Dreaming 3:151–178.

    Google Scholar 

  • Kamondi, A., Williams, J. A., Hutcheon, b., and Reiner, p. B. (1992). Membrane properties of mesopontine cholinergic neurons studied with the whole-cell patch-clamp technique implications for behavioral state control. J. Neurophysiol. 68:1359–1372.

    Google Scholar 

  • Kang, Y., and Kitai, S. T. (1990). Electrophysiological properties of pedunculopontine neurons and their postsynaptic responses following stimulation of substantia nitra reticulata. Brain Res. 535:79–95.

    Google Scholar 

  • Kaufman, L. S. (1983). Parachlorophenylalanine does not affect pontine-geniculate-occipital waves in rats despite significant effects on other sleep-waking parameters. Exp. Neurol. 80:410–417.

    Google Scholar 

  • Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G. (1980). Choline acetyltransferase-containing neurons in rodent brain demonstrated by immunocytochemistry. Science 208:1057–1059.

    Google Scholar 

  • Kimura, H., McGeer, P. L., Peng, J. H., and McGeer, E. G. (1981). The central cholinergic system studied by choline acetyltransferase immunohistochemistry in the cat. J. Comp. Neurol. 200:151–201.

    Google Scholar 

  • Kosaka, T., Kosaka, K., Hataguchi, Y., Nagatsu, I., Wu, J. Y., Ottersen, O. P., Storm-Mathisen, J., and Hama, K. (1987). Catecholaminergic neurons containing GABA-like and/or glutamic acid decarboxylase-like immunoreactivities in various brain regions of the rat. Exp. Brain Res. 66:191–210.

    Google Scholar 

  • Laurent, J. P., and Ayalaguerrero, F. (1975). Reversible suppression of ponto-geniculo-occipital waves by localized cooling during paradoxical sleep in cats. Exp. Neurol. 49:356–369.

    Google Scholar 

  • Leonard, C. S., and Llinas, R. R. (1990). Electrophysiology of mammalian pedunculopontine and laterodorsal tegmental neurons in vitro: Implications for the control of REM Sleep. In Brain Cholinergic Systems (M. Steriade and D. Biesold, Eds.), Oxford University Press, New York, pp. 205–223.

    Google Scholar 

  • Leonard, C. S., and Llinas, R. (1994). Serotonergic and cholinergic inhibition of mesopontine cholinergic neurons controlling REM sleep: An in vitro electrophysiological study. Neuroscience 59:309–330.

    Google Scholar 

  • Leonard, T. O., and Lydic, R. (1995). Nitric oxide synthase inhibition decreases pontine acetylcholine release. NeuroReport 6:1525–1529.

    Google Scholar 

  • Luebke, J., Greene, R., Semba, K., Kamondi, A., McCarley, R. W., and Reiner, P. (1992). Serotonin hyperpolarizes cholinergic low-threshold burst neurons the rat laterodorsal tegmental nucleus in vitro. Proc. Natl. Acad. Sci. USA 89:743–747.

    Google Scholar 

  • Luppi, P. H., Aston-Jones, G., Akaoka, H., Chouvet, G., and Jouvet, M. (1995). Afferent projections to the rat locus coeruleus demonstrated by retrograde and anterograde tracing with cholera-toxin B subunit and phaseolus vulgaris leucoagglutinin. Neuroscience 65:119–160.

    Google Scholar 

  • Lydic, R., McCarley, R. W., and Hobson, J. A. (1983). The time-course of dorsal raphe discharge, PGO waves, and muscle tone averaged across multiple sleep cycles. Brain Res. 274:365–370.

    Google Scholar 

  • Lydic, R., McCarley, R. W., and Hobson, J. A. (1985). Timing function of the dorsal raphe nucleus and the temporal organization of the ultradian sleep cycle. Exp. Brain Res. Suppl. 12:125–144.

    Google Scholar 

  • Magherini, P. C., Pompeiano, O., and Thoden, U. (1971). The neurochemical basis of REM sleep: A cholinergic mechanism responsible for rhythmic activation of the vestibulo-oculomotor system. Brain Res. 35:565–569.

    Google Scholar 

  • Malcolm, L. J., Watson, J. A., and Burke, W. (1970). PGO waves as unitary events. Brain Res. 24:130–133.

    Google Scholar 

  • Marks, G. A., Farber, J., and Roffwarg, H. P. (1980a). Metencephalic localization of ponto—geniculo-occipital waves in the albino rat. Exp. Neurol. 69:667–677.

    Google Scholar 

  • Marks, G. A., Farber, J., Rubinstein, M., and Roffwarg, H. P. (1980b). Demonstration of ponto-geniculo-occipital waves in the albino rat. Exp. Neurol. 69:648–655.

    Google Scholar 

  • McBride, R. L., and Sutin, J. (1976). Projections of the locus coeruleus and adjacent pontine tegmentum in the cat. J. Comp. Neurol. 165:265–284.

    Google Scholar 

  • McCarley, R. W. (1982). REM sleep and depression: Common neurobiological control mechanisms. Am. J. Psychiatry 139:565–570.

    Google Scholar 

  • McCarley, R. W., and Hobson, J. A. (1975). Discharge patterns of cat pontine brain stem neurons during desynchronized sleep. J. Neurophysiol. 38:751–766.

    Google Scholar 

  • McCarley, R. W., Nelson, J. P., and Hobson, J. A. (1978). Ponto-geniculo-occipital (PGO) burst neurons: Correlative evidence for neuronal generators of PGO waves. Science 201:269–272.

    Google Scholar 

  • McCarley, R. W., Winkelman, J. W., and Duffy, F. H. (1983). Human cerebral potentials associated with REM sleep rapid eye movements: links to PGO waves and waking potentials. Brain Res. 274:359–364.

    Google Scholar 

  • McGinty, D. J., and Harper, R. M. (1976). Dorsal raphe neurons: Depression of firing during sleep in cats. Brain Res. 101:569–575.

    Google Scholar 

  • Mesulam, M.-M., Mufson, E. J., Levey, A. I., and Wainer, B. H. (1984). Atlas of cholinergic neurons in the forebrain and upper brainstem of the macaque based on monoclonal choline acetyltransferase immunohistochemistry and acetylcholinesterase histochemistry. Neuroscience 12:669–686.

    Google Scholar 

  • Mikiten, T. M., Niebyl, P. H., and Hendley, C. D. (1961). EEG desynchronization during behavioral sleep associated with spike discharges from the thalamus of the cat. Fed. Proc. 20:327.

    Google Scholar 

  • Mitani, A., Ito, K., Hallanger, A. E., Wainer, B. H., Kataoka, K., and McCarley, R. W. (1988). Cholinergic projections from the laterodorsal and pedunculopontine tegmental nuclei to the pontine gigantocellular tegmental field in the cat. Brain Res. 451:397–402.

    Google Scholar 

  • Miyauchi, S., Takino, R., Fokuda, H., and Torii, S. (1987). Electrophysiological evidence for dreaming: human cerebral potentials associated with rapid eye movement during REM sleep. Electroenceph. Clin. Neurophysiol. 66:383–390.

    Google Scholar 

  • Moga, M. M., and Gray, T. S. (1985). Evidence for corticotropin-releasing factor, neurotensin, and somatostatin in the neural pathway from the central nucleus of the amygdala to the parabrachial nucleus. J. Comp. Neurol. 241:275–284.

    Google Scholar 

  • Morrison, A. R. (1979). Brainstem regulation of behaviour during sleep and wakefulness. Prog. Neurobiol. Physiol. Psychol. 8:91–131.

    Google Scholar 

  • Morrison, A. R., and Bowker, R. M. (1975). The biological significance of PGO spikes in the sleeping cat. Acta Neurobiol. Exp. 35:821–840.

    Google Scholar 

  • Morrison, A. R., and Pompeiano, O. (1966). Vestibular influences during sleep. IV. Functional relations between the vestibular nuclei and lateral geniculate nucleus during desynchronized sleep. Arch. Ital. Biol. 104:425–458.

    Google Scholar 

  • Mouret, J., Jeannerod, M., and Jouvet, M. (1963). L'activite electrique du systeme visuel au cours de la phase paradoxale du sommeil chez le chat. J. Physiol. (Paris) 55:305–306.

    Google Scholar 

  • Neal, H., and Bond, A. (1983). The influence of GABAergic drugs on PGO activity in the cat. Neuroparmacology 22:881–886.

    Google Scholar 

  • Nelson, J. P., McCarley, R. W., and Hobson, J. A. (1983). REM sleep burst neurons, PGO waves, and eye movement information. J. Neurophysiol. 50:784–797.

    Google Scholar 

  • Nitz, D. A., and Siegel, J. M. (1993). GABA release in the mesopontine central gray as a function of sleep state. Sleep Res. 22:447.

    Google Scholar 

  • Nomura, S., Mizuno, N., and Sugimoto, T. (1980). Direct projections from the pedunculopontine tegmental nucleus to the subthalamic nucleus in the cat. Brain Res. 196:223–227.

    Google Scholar 

  • Olszewski, J., and Baxter, D. (1982). Cytoarchitecture of the Human Brain Stem, Karger, Basel.

    Google Scholar 

  • Orem, J., and Barnes, C. D. (1980). Physiology in Sleep, Academic Press, New York.

    Google Scholar 

  • Pierce, E. T., Foote, W. E., and Hobson, J. A. (1976). The efferent connections of the nucleus raphe dorsalis. Brain Res. 107:137–144.

    Google Scholar 

  • Prast, H., and Philippu, A. (1992). Nitric oxide releases acetylcholine in the basal forebrain. Eur. J. Pharmacol. 216:139–140.

    Google Scholar 

  • Price, J. L. (1981). The efferent projections of the amygdaloid complex in the rat, cat and monkey. In The Amygdaloid Complex (Y. Ben-Ari, Ed.), Elsevier, Amsterdam, pp. 121–132.

    Google Scholar 

  • Quattrochi, J. J., Mamelak, A. N., Madison, R. D., Macklis, J. D., and Hobson, J. A. (1989). Mapping neuronal inputs to REM sleep induction sites with carbachol fluorescent microspheres. Science 245:984–986.

    Google Scholar 

  • Reiner, P. B., and Vincent, S. R. (1987). Topographic relations of cholinergic and noradrenergic neurons in the feline pontomesencephalic tegmentum: an immunohistochemical study. Brain Res. Bull. 19:705–714.

    Google Scholar 

  • Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976a). Drugs and PGO waves in the lateral geniculate body of the curarized cat. I. PGO wave activity induced by R04-1284 and by p-Chlorophenylalanine (PCPA) as a basis for neuropharmacological studies. Arch. Int. Pharmacodyn. Ther. 219:251–268.

    Google Scholar 

  • Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976b). Drugs and PGO waves in the lateral geniculate body of the curarized cat. II. PGO wave activity and brain 5-hydroxytryptamine. Arch. Int. Pharmacodyn. Ther. 219:269–286.

    Google Scholar 

  • Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976c). Drugs and PGO waves in the lateral geniculate body of the curarized cat. III. PGO wave activity and brain catecholamines. Arch. Int. Pharmacodyn. Ther. 219:287–307.

    Google Scholar 

  • Ruch-Monachon, M. A., Jalfre, M., and Haefly, W. (1976d). Drugs and PGO waves in the lateral geniculate body of the curarized cat. IV. The effects of acetylcholine, GABA and benzodiazepines on PGO wave activity. Arch. Int. Pharmacodyn. Ther. 219:308–325.

    Google Scholar 

  • Rye, D. B., Saper, C. B., Lee, H. J., and Wainer, B. H. (1987). Pedunculopontine tegmental nucleus of the rat: Cytoarchitecture, cytochemistry, and some extrapyramidal connections of the mesopontine tegmentum. J. Comp. Neurol. 259:483–528.

    Google Scholar 

  • Rye, D. B., Lee, H. J., Saper, C. B., and Wainer, B. H. (1988). Medullary and spinal efferents of the pedunculopontine tegmental nucleus and adjacent mosopontine tegmentum in the rat. J. Comp. Neurol. 269:3165–341.

    Google Scholar 

  • Saito, H., Sakai, K., and Jouvet, M. (1977). Discharge patterns of the nucleus parabrachialis lateralis neurons of the cat during sleep and waking. Brain Res. 134:59–72.

    Google Scholar 

  • Sakai, K., and Jouvet, M. (1980). Brainstem PGO-on cells projecting directly to the cat dorsal lateral geniculate nucleus. Brain Res. 194:500–505.

    Google Scholar 

  • Sakai, K., Petitjean, F., and Jouvet, M. (1976). effects of pontomesen-cephalic lesions and electrical stimulation upon PGO waves and EMPs in unanesthetized cats. Electroenceph. Clin. Neurophysiol. 41:49–63.

    Google Scholar 

  • Sakai, K., Touret, M., Salvert, D., Leger, L., and Jouvet, M. (1977a). Afferent projections to the cat locus coeruleus as visualized by the horseradish peroxidase technique. Brain Res. 119:21–41.

    Google Scholar 

  • Sakai, K., Salvert, D., Touret, M., and Jouvet, M. (1977b). Afferent connections of the nucleus raphe dorsalis in the cat as visualized by the horseradish peroxidase technique. Brain Res. 137:11–35.

    Google Scholar 

  • Salzarulo, P., Lairy, G. C., Bancaud, J., and Munari, C. (1975). Direct depth recording of the striate cortex during REM sleep in man: Are there PGO potentials? Electroenceph. Clin. Neurophysiol. 38:199–202.

    Google Scholar 

  • Sanford, L. D., Ball, W. A., Morrison, A. R., and Ross, R. J. (1992a). Varying expression of alerting mechanisms in wakefulness and across sleep states. Electroenceph. Clin. Neurophysiol. 83:458–468.

    Google Scholar 

  • Sanford, L. D., Ball, W. A., Morrison, A. R., Ross, R. J., and Mann, G. L. (1992b). Peripheral and central components of alerting: habituation of acoustic startle, orienting responses and elicited waveforms. Behav. Neurosci. 106:112–120.

    Google Scholar 

  • Sanford, L. D., Ball, W. A., Morrison, A. R., and Ross, R. J. (1993). The amplitude of elicited PGO waves: A correlate of orienting. Electroenceph. Clin. Neurophysiol. 86:438–445.

    Google Scholar 

  • Sanford, L. D., Ross, R. J., and Morrison, A. R. (1994). Antagonizing serotonin in the amygdala releases pontine PGO waves in rats. Soc. Neurosci. Abstr. 20:162.

    Google Scholar 

  • Sanford, L. D., Ross, R. J., and Morrison, A. R. (1995). Serotonergic mechanisms in the amygala terminate REM sleep. Sleep Res. 24:54.

    Google Scholar 

  • Saper, C. B., and Loewy, A. D. (1980). Efferent connections of the parabrachial nucleus in the rat. Brain Res. 197:291–317.

    Google Scholar 

  • Satoh, K., and Fibiger, H. C. (1985a). Distribution of central cholinergic neurons in the baboon (Papio papio). I. General morphology. J. Comp. Neurol. 236:197–214.

    Google Scholar 

  • Satoh, K., and Fibiger, H. C. (1985b). Distribution of central cholinergic neurons in the baboon (Papio papio). II. A topographic atlas correlated with catecholamine neurons. J. Comp. Neurol. 236:215–233.

    Google Scholar 

  • Satoh, K., and Fibiger, H. C. (1986). Cholinergic neurons of the laterodorsal tegmental nucleus: Efferent and afferent connections. J. Comp. Neurol. 253:277–302.

    Google Scholar 

  • Semba, K., and Fibiger, H. C. (1992). Afferent connections of the laterodorsal and pedunculopontine tegmental nuclei in the rat: A retro-and anterograde transport and immunohistochemical study. J. Comp. Neurol. 322:1–24.

    Google Scholar 

  • Shiromani, P. S., Armstrong, D. M., and Gillin, J. C. (1988). Cholinergic neurons from the dorsolateral pons project to the medial pons: A WGA-HRP and choline acetyltransferase immunohistochemical study. Neurosci. Lett. 95:19–23.

    Google Scholar 

  • Shouse, N., and Siegel, J. M. (1992). Pontine regulation of REM sleep components in cats: Integrity of the pedunculopontine tegmentum (PPT) is important for phasic events but unnecessary for atonia during REM sleep. Brain Res. 571:50–63.

    Google Scholar 

  • Siegel, J. M. (1979). Behavioral functions of the reticular formation. Brain Res. Rev. 1:69–105.

    Google Scholar 

  • Simon, R., Gershon, M. D., and Brooks, D. C. (1973). The role of the raphe nuclei in the regulation of PGO wave activity. Brain Res. 58:313–330.

    Google Scholar 

  • Snyder, S. H., and Bredt, D. S. (1991). Nitric oxide as a neural messenger. TIPS 12:125–128.

    Google Scholar 

  • Steininger, T. L., Rye, D. B., and Wainer, B. H. (1992). Afferent projections to the cholinergic pedunculopontine tegmental nucleus and adjacent midbrain extrapyramidal area in the albino rat. I. retrograde tracing studies. J. Comp. Neurol. 321:515–543.

    Google Scholar 

  • Steriade, M., and McCarley, R. W. (1990). Brainstem Control of Wakefulness and Sleep, Plenum Press, New York.

    Google Scholar 

  • Steriade, M., Datta, S., Pare, D., Oakson, G., and Currodossi, R. (1990a). Neuronal activities in brain-stem cholinergic nuclei related to tonic activation processes in thalamortical systems. J. Heurosci. 10:2541–2559.

    Google Scholar 

  • Steriade, M., Pare, D., Datta, S., Oakson, G., and Currodossi, R. (1990b). Different cellular types in mesopontine cholinergic nuclei related to ponto-geniculo-occipital waves. J. Neurosci. 10:2560–2579.

    Google Scholar 

  • Steriade, M., Pare, D., Parent, A., and Smith, Y. (1988). Projections of cholinergic and noncholinergic neurons of the brain stem core to relay and associational thalamic nuclei in the cat and macaque monkey. Neuroscience 25:47–67.

    Google Scholar 

  • Stern, W. C., Forbes, W. B., and Morgane, P. J. (1974). Absence of ponto-geniculo-occipital (PGO) spikes in rats. Physiol. Behav. 12:293–295.

    Google Scholar 

  • Trulson, M. E., and Jacobs, B. L. (1979). Raphe unit activity in freely moving cats: Correlation with level of behavioral arousal. Brain Res. 163:135–150.

    Google Scholar 

  • Vertes, R. P. (1991). A PHA-L analysis of ascending projections of the dorsal raphe nucleus in the rat. J. Comp. Neurol. 313:643–668.

    Google Scholar 

  • Vincent, S. R., and Reiner, P. B. (1987). The immunohistochemical localization of choline acetyltransferase in the cat brain. Brain Res. Bull. 18:371–415.

    Google Scholar 

  • Vincent, S. R., Satoh, K., Armstrong, D. M., Panula, P., Vale, W., and Fibiger, H. C. (1986). Neuropeptides and NADPH-diphorase activity in the ascending cholinergic reticular system of the rat. Neuroscience 17:167–182.

    Google Scholar 

  • Vuillon-Cacciuttolo, G., and Seri, B. (1978). Effets de la section des nerfs optiques chez le babouin sur l'activite A Type de pointes genouilles et corticales au cours des divers etats de vigilance. Electroencephalogr. Clin. Neurophysiol. 44:754–768.

    Google Scholar 

  • Webster, H. H., and Jones, B. E. (1988). Neurotoxic lesions of the dorsolateral pontomesencephalic tegmentum cholinergic cell area in the cat. II. Effects upon sleep-waking states. Brain Res. 458:285–302.

    Google Scholar 

  • Williams, J. A., and Reiner, P. B. (1993). Noradrenaline hyperpolarizes identified rat mesopontine cholinergic neurons in vitro. J. Neurosci. 13:3878–3883.

    Google Scholar 

  • Woolf, N. J., and Butcher, L. L. (1986). Cholinergic systems in the rat brain. III. Projections from the pontomesencephalic tegmentum to the thalamus, tectum, basal ganglia and basal forebrain. Brain Res. Bull. 16:603–637.

    Google Scholar 

  • Yamuy, J., Mancillas, J. R., Morales, F. R., and Chase, M. H. (1993). c-fos expression in the pons and medulla of the cat during carbachol-induced active sleep. J. Neurosci. 13:2703–2718.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Datta, S. Cellular Basis of Pontine Ponto-geniculo-occipital Wave Generation and Modulation. Cell Mol Neurobiol 17, 341–365 (1997). https://doi.org/10.1023/A:1026398402985

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026398402985

Navigation