Skip to main content
Log in

Major changes in pelagic rotifers during natural and forced recovery from acidification

  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Pelagic rotifers were studied in lakes with contrasting acidification histories situated in an acid-stressed region of southern Norway. Life histories and spatial distribution varied considerably between the investigated species, and influenced the recovery processes. Most headwater lakes have experienced strongly acidified environments during the last five decades, whereas lakes close to the Skagerrak coast have been stable within the same period. Rotifer diversity and abundance were reduced in the most acidic sites and increased towards the coast. Most surveyed species are known to possess sediment egg-banks, and after chemical recovery most rotifers dispersed into the plankton from these egg-banks and produced viable populations. Some species of the genera Polyarthra and Collotheca, and the species Kellicotta longispina and Keratella serrulata showed a striking ability to tolerate acidification, and were the dominant taxa in the acidmost environments. K. serrulata characterised, but did not numerically dominate, acid rotifer communities especially in the most coloured sites, and decreased following liming. The predominantly bacteriophageous genus Conochilus exploded in numbers shortly after liming, most probably because bacteria increased strongly during this transition phase. Planktivorous fish influenced indirectly rotifer abundance by consuming invertebrate predators and important rotifer competitors such as filter feeding cladocerans. Invertebrate predators, such as larvae of Chaoborus spp. and Heterocope saliens probably influenced rotifer distributional patterns in a complex top-down manner, both during chronic acidification and liming in environments with low fish predation. Important rotifer predators such as pelagic cyclopoid copepods, Bythotrephes longimanus and Leptodora kindti, were absent from the most acidic fishless lakes. Considerable populations of large-sized Daphnia longispina probably suppressed several rotifer species in sites with low fish predation, as did large populations of Bosmina longispina and Ceriodaphina quadrangula in lakes with intense fish predation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almer, B., W. Dickson, C. Ekström, E. Hörnström & U. Miller, 1974. Effects of acidification of Swedish lakes. Ambio 3: 30–36.

    Google Scholar 

  • Andersen, R. & J. P. Nilssen, 1984. Mechanisms of co-existence of Heterocope saliens (Crustacea, Copepoda) and planktivorous fish. Fauna nor. Ser A 5: 31–36.

    Google Scholar 

  • Anderson, R. S., 1970. Predator-prey relationships and predation rates for crustacean zooplankters from some lakes in western Canada. Can. J. Zool. 48: 1229–1240.

    Google Scholar 

  • Anderson, R. S., 1977. Rotifer populations in mountain lakes relative to fish and species of copepods present. Arch. Hydrobiol. Beih. 8: 130–134.

    Google Scholar 

  • Arndt, H., 1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates) – a review. Hydrobiology 255/256: 231–246.

    Google Scholar 

  • Arnott, S. E. & M. J. Vanni, 1993. Zooplankton assemblages in fishless bog lakes: influence of biotic and abiotic factors. Ecology 74: 2361–2380.

    Google Scholar 

  • Arvola, L., K. Salonen, I. Bergström, A. Heinänen & A. Ojala, 1986. Effects of experimental acidification on phyto-, bacterioand zooplankton in enclusures of a highly humic lake. Int. Rev. ges. Hydrobiol. 71: 737–758.

    Google Scholar 

  • Battarbee, R. W., J. Mason, I. Renberg & J. F. Talling (eds), 1990. Paleolimnology and lake acidification. Phil. Trans. R. Soc. London. B 327: 223–445.

  • Bérzinš, B., 1976. Further notes on the Swedish collothecacean Rotatoria. In Bérzi¸nš, B. (ed.), Notes on the Rotifera from Aneboda, Sweden. Lund, Sweden: 3–7, Figures 1–4.

    Google Scholar 

  • Bérzinš, B. & B. Pejler, 1987. Rotifer occurrence in relation to pH. Hydrobiologia 147: 107–116.

    Google Scholar 

  • Bogdan, K. G. & J. H. Gilbert, 1982. Seasonal patterns of feeding by natural populations of Keratella, Polyarthra, and Bosmina: clearance rates, selectivities, and contributions to community grazing. Limnol. Oceanogr. 27: 918–934.

    Google Scholar 

  • Brandl, Z. & C. H. Fernando, 1979. The impact of predation by the copepod Mesocyclops edax (Forbes) on zooplankton in three lakes in Ontario, Canada. Can. J. Zool. 57: 940–942.

    Google Scholar 

  • Brettum, P. & J. E. Løvik, 2001. Overvåkning i 2000 av vannkvaliteten i Puttjernene, Puttjernsbekken og Lutvannsbekken i Østmarka. Sammenligning med resultatene fra undersøkelsene i 1998 og 1999. NIVA-Rapport 4329-2001: 1–77 (Mimeogr. In Norwegian, English summary).

  • Brettum, P., F. Kroglund, J. P. Nilssen, S. Sandøy, A. Skov & S. B. Wærvågen, 1984. Eksperimentelle innhegningsforsøk i Gjerstad, Aust-Agder. Et forsøk på alternativ behandling av sure vann. Rep. Norw. Liming Project 16-1984: 1–78 (Mimeogr. In Norwegian).

    Google Scholar 

  • Burckhardt, G., 1944. Verarmnung des Planktons in kleinen Seen durch Heterocope. Schweiz. Z. Hydrol. 10: 121–124.

    Google Scholar 

  • Carter, J. C. H., M. J. Dadswell, J. C. Roff & W. G. Sprules, 1986. Limnetic zooplankton assemblages in Atlantic Canada with special reference to acidification. Can. J. Fish. aquat. Sci. 43: 444–456.

    Google Scholar 

  • Chengalath, R., W. J. Bruce & D. A. Scruton, 1984. Rotifer and crustacean plankton communities of lakes in insular Newfoundland. Verh. int. Ver. Limnol. 22: 419–430.

    Google Scholar 

  • Dannevig, A., 1938. Ferskvannsørreten på Sørlandet. P.M. Danielsens forlag, Arendal (in Norwegian): 69 pp.

  • De Melo, R. & P. D. N. Hebert, 1994. A taxonomic reevaluation of North American Bosminidae. Can. J. Zool. 72: 1808–1825.

    Google Scholar 

  • Demmo, R., 1985. En undersøkelse av zooplanktonsamfunnene i Bosviktjern og Bosvikkilen. En limnisk og en marin lokalitet ved Risør i Aust-Agder. Thesis, Univ. Oslo: 202 pp. (Mimeogr. in Norwegian).

  • Diéguez, M. & E. Balseiro, 1998. Colony size in Conochilus hippocrepis: defensive adaptation to predator size. Hydrobiologia 387/388: 421–425.

    Google Scholar 

  • Dougan, W. K. & A. L. Wilson, 1974. The absorptiometric determination of aluminium in water. A comparison of some chro79 mogenic reagents and the development of an improved method. Analyst 99: 413–430.

    PubMed  Google Scholar 

  • Drabløs, D. & A. Tollan (eds), 1980. Ecological Impacts of Acid Precipitation. SNSF-project. Ås-NLH: 383 pp.

  • Duggan, I. C., J. D. Green & R. J. Shiel, 2002. Rotifer resting egg densities in lakes of different trophic state, and their assessment using emergence and egg counts. Arch. Hydrobiol. 153: 409–420.

    Google Scholar 

  • Dumont, H. J., 1983. Biogeography of rotifers. Hydrobiology 104: 19–30.

    Google Scholar 

  • Eie, J. A., 1974. A comparative study of the crustacean communities in forest and mountain localities in the Vassfaret area (southern Norway). Norw. J. Zool. 22: 177–205.

    Google Scholar 

  • Ejsmont-Karabin, J., 1974. Studies on the feeding of planktonic polyphage Asplanchna priodonta Gosse (Rotatoria). Ekol. Pol. 22: 311–317.

    Google Scholar 

  • Ekström, C. & E. Hörnström, 1995. Development of zooplankton in relation to lime treatment in two acidified lakes. Water Air Soil Pollut. 85: 925–930.

    Google Scholar 

  • Eriksson, F., E. Hörnström, P. Mossberg & P. Nyberg, 1983. Ecological effects of lime treatments of acidified lakes and rivers in Sweden. Hydrobiologia 101: 145–164.

    Google Scholar 

  • Eriksson, M. O. G., L. Henrikson, B.-I. Nilssen, G. Nyman, H. G. Oscarson & J. A. E. Stenson, 1980. Predator–prey relations important for the biotic changes in acidified lakes. Ambio 9: 248–249.

    Google Scholar 

  • Fott, J., M. Prażáková, E. Stuchlík & Z. Stuchlíková, 1994. Acidification of lakes in Šumava (Bohemia) and in the High Tatra Mountains (Slovakia). Hydrobiologia 274: 37–47.

    Google Scholar 

  • Frost, T. M., P. M. Montz, M. J. Gonzalez, B. L. Sanderson & S. E. Arnott, 1998. Rotifer responses to increased acidity: long-term patterns during the experimental manipulation of Little Rock Lake. Hydrobiologia 387/388: 141–152.

    Google Scholar 

  • Galkovskaya, G. A. & I. F. Mityania, 1989. Morphological structure and functional patterns of Keratella cochlearis (Gosse) in stratified lakes. Hydrobiologia 186/187: 119–128.

    Google Scholar 

  • Gannon, J. E. & R. S. Stemberger. 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. Am. Micros. Soc. 97: 16–35.

    Google Scholar 

  • Gilbert, J. J., 1974. Dormancy in rotifers. Trans. Am. Micr. Soc. 93: 490–513.

    Google Scholar 

  • Gilbert, J. J., 1985a. Escape response of the rotifer Polyarthra: a high-spedd cinematographic analysis. Oecologia (Berlin) 66: 322–331.

    Google Scholar 

  • Gilbert, J. J., 1985b. Competition between rotifers and Daphnia. Ecology 66: 1943–1950.

    Google Scholar 

  • Gilbert, J. J., 1988. Suppression of rotifer populations by Daphnia: a review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33: 1286–1303.

    Google Scholar 

  • Gilbert J. J. & C. E. Williamson, 1978. Predator-prey behavior and its effect on rotifer survival in associations of Mesocyclops edax, Asplanchna giroldi, Polyarthra vulgaris, and Keratella cochlearis. Oecologia (Berl.) 37: 13–22.

    Google Scholar 

  • Gilbert, J. J. & K. G. Bogdan, 1984. Rotifer grazing: in situ studies on selectivity and rates. In Meyers, D. G. & J. R. Strickler (eds), Trophic Interactions Within Aquatic Ecosystems. AAAS Spec Symp 85, Boulder, Colorado: 97–133.

  • Gilbert, J. J. & H. J. MacIsaac, 1989. The susceptibility of Keratella cochlearis to interference from small cladocerans. Freshwat. Biol. 22: 333–339.

    Google Scholar 

  • Gonzáles, M. J., 1998. Spatial segregation between rotifers and cladocerans mediated by Chaoborus. Hydrobiologia 387/388: 427–436.

    Google Scholar 

  • Gonzáles, M. J. & T. M. Frost, 1994. Comparisons of laboratory bioassays and a whole-lake experiment: Rotifer responses to experimental acidification. Ecol. Appl. 4: 69–80.

    Google Scholar 

  • Green, J., 1993. Diversity and dominance in planktonic rotifers. Hydrobiology 255/256: 345–352.

    Google Scholar 

  • Grossnickle, N. E. & T. F. Næsje, 1993. Predation by the glacial relicts Mysis relicta and Heterocope appendiculata in Norwegian lakes. Verh. int. Ver. Limnol. 25: 470–473.

    Google Scholar 

  • Guiset, A., 1977. Stomach contents of Asplanchna and Ploesoma. Arch. Hydrobiol. Beih. 8: 126–129.

    Google Scholar 

  • Guma'a, S. A., 1978. The food and feeding habits of young perch, Perca fluviatilis, in Windermere. Freshwat. Biol. 8: 177–187.

    Google Scholar 

  • Hasselrot, B., B. I. Andersson & H. Hultberg, 1984. Ecosystem shifts and reintroduction of Arctic Char (Salvelinus salvelinus (L.)) after liming of a strongly acidificed lake southwestern Sweden. Rep. Inst. Freshwat. Drottningholm 61: 78–92.

    Google Scholar 

  • Havens, K. & J. DeCosta, 1988. An experimental analysis of the acid sensitivity of the common planktonic rotifer Keratella cochlearis. Int. Rev. ges. Hydrobiol. 73: 407–416.

    Google Scholar 

  • Havens, K. E. & R. T. Heath, 1989. Acid and aluminum effects on freshwater zooplankton: an in situ mesocosm study. Environ. Pollut. 62: 195–211.

    PubMed  Google Scholar 

  • Hebert, P. D. N. & J. M. Loaring, 1980. Selective predation and the species composition of arctic ponds. Can. J. Zool. 58: 422–426.

    Google Scholar 

  • Henriksen, A., A. Hindar, D. Hessen & Ø. Kaste, 1977. Contribution of nitrogen to acidity in the Bjerkrheim River in southwestern Norway. Ambio 26: 304–311.

    Google Scholar 

  • Henrikson, L. & H. G. Oscarson, 1984. Lime influence on macro-invertebrate zooplankton predators. Rep. Inst. Freshwat. Drottningholm 61: 93–103.

    Google Scholar 

  • Hessen, D. O., 1990. Niche overlap between herbivorous cladocerans: the role of food quality and habitat homogeneity. Hydrobiologia 190: 61–78.

    Google Scholar 

  • Hillbricht-Ilkowska, A., J. I. Rybak, Z. Kajak, K. Dusoge, J. Ejsmont-Karabin, I. Spodniewska, T. Weglenska & W. A. Godlewska-Lipowa, 1977. Effect of liming on a humic lake. Ekol. Pol. 25: 379–420.

    Google Scholar 

  • Hindar, A. & J. P. Nilssen (eds), 1984. Årsrapport Gjerstad 1982/84. Rep. Norw. Liming Project, 21-1984: 1–153 (Mimeogr. in Norwegian).

  • Hindar, A., A. Henriksen, S. Sandøy & A. J. Romundstad, 1998. Critical load concept to set restoration goals for liming acidificed Norwegian waters. Restaurat. Ecol. 6: 353–363.

    Google Scholar 

  • Hobæk, A. & G. G. Raddum, 1980. Zooplankton communities in acidified lakes in South Norway. SNSF-project, IR 75/80: 1–132.

    Google Scholar 

  • Hofmann, W., 1980. On morphological variation in Keratella cochlearis population from Holstein lakes (Northern Germany). Hydrobiologia 73: 255–258.

    Google Scholar 

  • Hörnström, E. & C. Ekström, 1983. pH, närings-och aluminiumseffekter på plankton i västkystsjöar. Rep. Natl. Swed. Environ. Protect. Board SNV-PM 1864. 110 pp. (in Swedish, summary in English).

  • Hörnström, E. & C. Ekström, 1986. Acidification and liming effects on phyto-and zooplankton in some Swedish West Coast lakes. Rep. Natl. Swed. Environ. Protect. Board SNV-PM 1704. 124 pp.

  • Hörnström, E., C. Ekström, E. Fröberg & J. Ek, 1993. Plankton and chemical-physical development in six Swedish West Coast lakes under acidic and limed conditions. Can. J. Fish. aquat. Sci. 50: 688–702.

    Google Scholar 

  • Karabin, A., 1978. The pressure of pelagic predators of the genus Mesocyclops (Copepoda, Crustacea) on small zooplankton. Ekol. Pol. 26: 241–257.

    Google Scholar 

  • Keller, W. & N. D. Yan, 1998. Biological recovery from lake acidification: zooplankton communities as a model of patterns and processes. Rest. Ecol. 6: 364–375.

    Google Scholar 

  • Keller, W., J. M. Gunn & N. D. Yan, 1999. Acid rain – perspectives on lake recovery. J. Aquat. Eco. Stress Rec. 6: 207–216.

    Google Scholar 

  • Keller W., N. D. Yan, T. Howell, L. A. Molot & W. D. Taylor, 1992. Changes in zooplankton during the experimental neutralization and early reacidification of Bowland Lake near Sudbury, Ontario. Can. J. Fish. aquat. Sci. 49: 52–62.

    Google Scholar 

  • Koste, W. & M. Voigt, 1978. Rotatoria. Die Rädertiere Mitteleuropas. 2 vols. Gebrüder Borntraeger, Berlin, Stuttgart.

    Google Scholar 

  • Lair, N. & H. Oulad Ali, 1990. Grazing and assimilation rates of natural populations of planktonic rotifers Keratella cochlearis, Keratella quadrata and Kellicottia longispina in a eutrophic lake (Aydat, France). Hydrobiologia 194: 119–131.

    Google Scholar 

  • Larsen, D. A., 1982. Populasjonsdynamikk til zooplankton i Fievann, et mixotroft kystvann i Aust-Agder, med spesiell vekt på konkurranse og predasjon som regulerende faktorer. Thesis, Univ. Oslo. 166 pp. (Mimeogr. in Norwegian).

  • Larsson, P., 1971. Vertical distribution of planktonic rotifers in a meromictic lake; Blankvatn near Oslo, Norway. Norw. J. Zool. 19: 47–75.

    Google Scholar 

  • Luecke, C. & W. J. O'Brien, 1983. The effect of Heterocope predation on zooplankton communities in arctic ponds. Limnol. Oceanogr. 28: 367–377.

    Google Scholar 

  • Lydersen, E., 1998. Humus and acidification. In Hessen, D. O. & L. Tranvik (eds), Aquatic Humic Substances, Ecology and Biochemistry. Ecological Studies 133, Springer-Verlag: 63–92.

  • MacIsaac, H. J. & J. J. Gilbert, 1989. Competition between rotifers and cladocerans of different body sizes. Oecologia (Berl.) 81: 295–301.

    Google Scholar 

  • MacIsaac, H. J. & J. J. Gilbert, 1991. Discrimination between exploitative and interference competition between Cladocera and Keratella cochlearis. Ecology 72: 924–937.

    Google Scholar 

  • MacIsaac, H. J., W. Keller, T. C. Hutchinson & N. D. Yan, 1986. Natural changes in the planktonic Rotifera of a small acid lake near Sudbury, Ontario following water quality improvements. Water Air Soil Pollut. 31: 791–797.

    Google Scholar 

  • MacIsaac, H. J., T. C. Hutchinson & W. Keller, 1987. Analysis of planktonic rotifer assemblages from Sudbury, Ontario, area lakes of varying chemical composition. Can. J. Fish. aquat. Sci., 44: 1692–1701.

    Google Scholar 

  • Makarewicz, J. C. & G. E. Likens, 1979. Structure and function of the zooplankton community of Mirror Lake, New Hampshire. Ecol. Monogr. 49: 109–127.

    Google Scholar 

  • Matveeva, L. K., 1989. Interrelations of rotifers with predatory and herbivorous Cladocera: a review of Russian works. Hydrobiologia 186/187: 69–73.

    Google Scholar 

  • May, L., 1986. Rotifer sampling – a complete species list from one visit? Hydrobiologia 134: 117–120.

    Google Scholar 

  • May, L., 1995. The effect of lake fertilisation on the rotifers of Seathwaite Tarn, an acidified lake in the English Lake District. Hydrobiologia 313/314: 333–340.

    Google Scholar 

  • Monakov, A. V., 1972. Review of studies on feeding of aquatic invertebrates conducted at the Institute of Biology of inland waters, Academy of sciences, USSR. J. Fish. Res. Bd Can. 29: 363–383.

    Google Scholar 

  • Moore, M. V., 1988. Differential use of food resources by the instars of Chaoborus punctipennis. Freshwat.Biol. 19: 249–268.

    Google Scholar 

  • Moore, M. V., N. D. Yan & T. Pawson, 1994. Omnivory of the larval phantom midge (Chaoborus spp.) and its potential significance for freshwater planktonic food webs. Can. J. Zool. 72: 2055–2065.

    Google Scholar 

  • Morling, G. & B. Pejler, 1990. Acidification and zooplankton development in some West-Swedish lakes 1966–1983. Limnologica (Berlin) 20: 307–318.

    Google Scholar 

  • Næss, T., 1985. En undersøkelse av zooplanktonsamfunnene i Vormelitjenn og Søndeledpollen, en limnisk og marin lokalitet ved Søndeled i Aust-Agder. Thesis, Univ. Oslo. 226 pp. (Mimeogr. in Norwegian).

  • Niemi, G. J., P. Devore, N. Detenbeck, D. Taylor, A. Lima, J. Pastor, J. D. Yount & R. J. Naiman, 1991. Overview of case studies on recovery of aquatic systems from disturbance. Environ. Manage. 14: 571–588.

    Google Scholar 

  • Nilssen, J. P., 1974. Inventeringsundersøkelser i Aust-Agder sommer/høst 1973. Landsplanen for verneverdige områder/forekomster. Ferskvann. Kontaktutvalget for vassdragsreguleringer (Mimeogr. in Norwegian). 130 pp.

  • Nilssen, J. P., 1976. Community analysis and altitudinal distribution of limnetic Entomostraca from different areas in southern Norway. Pol. Arch. Hydrobiol. 23: 105–122.

    Google Scholar 

  • Nilssen, J. P., 1980. Acidification of a small watershed in southern Norway and some characteristics of acidic aquatic environments. Int. Rev. ges. Hydrobiol. 65: 177–207.

    Google Scholar 

  • Nilssen, J. P., 1984. An ecological jig-saw puzzle: reconstructing aquatic biogeography and pH in an acidified region. Rep. Inst. Freshwat. Res. Drottningholm 61: 138–147.

    Google Scholar 

  • Nilssen, J. P. & S. Sandøy, 1986. Acidification history and crustacean remains: some ecological obstacles. Hydrobiologia 143: 349–354.

    Google Scholar 

  • Nilssen, J. P., T. Østdahl & W. T. W. Potts, 1984a. Species replacements in acidified lakes: physiology, predation or competition? Rep. Inst. Freshwat. Res. Drottningholm 61: 148–153.

    Google Scholar 

  • Nilssen, J. P., W. T. W. Potts & T. Østdahl, 1984b. Fysiologi til zooplankton under forsurning og kalkning. Rep. Norw. Liming Project, 11-1984: 1–32 (Mimeogr. in Norwegian).

    Google Scholar 

  • Nilssen, J. P. & S. B. Wærvågen, 2001. Kjemisk og biologisk «recovery» av forsurede innsjøer i Aust-Agder. Kakede vann og referansevann i 1999 og 2000. Fylkesmannen i Aust-Agder, Rapport nr. 2 – 2001: 1–80 (Mimeogr. in Norwegian). ISSN 0800–8523.

    Google Scholar 

  • Nilssen, J. P. & S. B. Wærvågen, 2002a. Intensive fish predation: an obstacle to recovery following liming of acid damaged lakes? J. Aq. Ecosyst. Stress Recov. 9: 73–84.

    Google Scholar 

  • Nilssen, J. P. & S. B. Wærvågen, 2002b. Recent re-establishment of the key species Daphnia longispina and cladoceran community changes following chemical recovery in a strongly acid-stressed region in southern Norway. Arch. Hydrobiol. 153: 557–580.

    Google Scholar 

  • Nilssen, J.P. & S.B. Waervågen, 2003. Ecological distribution of pelagic copepods and species relationship to acidification, liming and natural recovery in a boreal area. J. Limnol. 62: 97–114.

    Google Scholar 

  • Nipkow, F., 1961. Die Rädertiere im Plankton des Zürichsees und ihre Entwicklungsphasen. Schweiz. Z. Hydrol. 14: 398–461.

    Google Scholar 

  • Nogrady, T., R. L. Wallace & T. W. Snell, 1993. Rotifera. SPB Academic Publ., The Hague. 142 pp.

    Google Scholar 

  • Nyberg, P., 1984. Impact of Chaoborus predation on planktonic crustacean communities in some acidified and limed forest lakes in Sweden. Rep. Inst. Freshwat. Res. Drottninholm 61: 154–166.

    Google Scholar 

  • Nyman, H. G., H. G. Oscarson & J. A. E. Stenson, 1985. Impact of invertebrate predators on the zooplankton composition in acid forest lakes. Ecol. Bull (Stockh.) 37: 239–243.

    Google Scholar 

  • Ortells, R., T. Snell, A. Gómez & M. Serra, 2000. Patterns of genetic differentiation in resting egg banks of a rotifer species complex in Spain. Arch. Hydrobiol. 149: 529–551.

    Google Scholar 

  • Paul, A. J. & D. W. Schindler, 1994. Regulation of rotifers by predatory calanoid copepods (subgenus Hesperodiaptomus) in lakes 81 in the Canadian Rocky Mountains. Can. J. Fish. aquat. Sci. 51: 2520–2528.

    Google Scholar 

  • Pejler, B., 1956. Introgression in planktonic Rotatoria with some point of view on its causes and conceivable results. Evolution 10: 246–261.

    Google Scholar 

  • Pejler, B., 1965. Regional-ecological studies of Swedish fresh-water zooplankton. Zool. Bidr. Upps. 36: 407–515.

    Google Scholar 

  • Pejler, B., 1977. General problems of rotifer taxonomy and global distribution. Arch. Hydrobiol. Beih. 8: 212–220.

    Google Scholar 

  • Pourriot, R., 1977. Food and feeding habits of Rotifera. Arch. Hydrobiol. Beih. 8: 243–260.

    Google Scholar 

  • Raddum, G. G., P. Brettum, D. Matzow, J. P. Nilssen, A. Skov, T. Sväelv & R. F. Wright, 1986. Liming the acid Lake Hovvatn, Norway: a whole-ecosystem study. Water Air Soil Pollut. 31: 721–763.

    Google Scholar 

  • Roff, J. C. & R. E. Kwiatkowski, 1977. Zooplankton and zoobenthos communities of selected northern Ontario lakes of different acidities. Can. J. Zool. 55: 899–911.

    Google Scholar 

  • Rublee, P. A., 1998. Rotifers in arctic North America with particular reference to their role in microplankton community structure and responses to ecosystem perturbations in Alaska Arctic LTER lakes. Hydrobiologia 387/388: 153–160.

    Google Scholar 

  • Ruttner-Kolisko, A., 1963. The interrelationships of the Rotatoria. In Dougherty, E. C. (ed.), The Lower Metazoa. Univ. California Press, Berkeley, California.

    Google Scholar 

  • Ruttner-Kolisko, A., 1972. Rotatoria. In Das Zooplankton der Binnengewässer I: 99–234.

    Google Scholar 

  • Salonen, K., M. Järvinen, K. Kuoppamäki & L. Arvola, 1990. Effects of liming on the chemistry and biology of a small acid humic lake. In Kauppi, P., K. Kenttämies & P. Anttila (eds), Acidification in Finland. Springer-Verlag, Berlin Heidelberg: 1145–1167.

    Google Scholar 

  • Sandøy, S., 1984. Zooplanktonsamfunnet i to forsura vatn i Gjerstad i Aust-Agder. Virkning av biotiske og abiotiske faktorar på livssyklus og populasjonstetthet. Thesis, Univ. Oslo. 247pp. (Mimeogr. in Norwegian).

  • Sandøy, S. & J. P. Nilssen, 1987a. Life cycle dynamics and vertical distribution of Heterocope saliens (LILLJ.) in two anthropogenic acidic lakes in southern Norway. Arch. Hydrobiol. 110: 83–99.

    Google Scholar 

  • Sandøy, S. & J. P. Nilssen, 1987b. Cyclopoid copepods in marginal habitats: Abiotic control of population densities in anthropogenic acidic lakes. Arch. Hydrobiol. Suppl. 76: 236–255.

    Google Scholar 

  • Sarvala, J., P. Kankaala, P. Zingel & L. Arvola, 1999. 6.2. Zooplankton. In Keskitalo, J. & P. Eloranta (eds), Limnology of Humic Waters. Backhuys Publ., Leiden: 173–191.

    Google Scholar 

  • Scheda, S. M. & B. C. Cowell, 1988. Rotifer grazers and phytoplankton: seasonal experiments on natural communities. Arch. Hydrobiol. 114: 31–44.

    Google Scholar 

  • Siegfried, C. A., 1991. The pelagic rotifer community of an acidic clearwater lake in the Adirondack Mountains of New York State. Arch. Hydrobiol. 122: 441–462.

    Google Scholar 

  • Siegfried, C. A., J. W. Sutherland, S. O. Quinn & J. A. Bloomfield, 1984. Lake acidification and the biology of Adirondack lakes: I. Rotifer communities. Verh. int. Verein. Limnol. 22: 549–558.

    Google Scholar 

  • Skadovsky, S. N., 1926. Ñber die aktuelle Reaktion der Süsswasserbecken und ihre biologische Bedeutung. Verh. int. Ver. Limnol. 3: 109–144.

    Google Scholar 

  • Skjelkvåle, B. L., T. Andersen, E. Fjeld, J. Mannio, A. Wilander, K. Johansson, J. P. Jensen & T. Moiseenko, 2001. Heavy metal survey in Nordic lakes; concentrations, geographical patterns and relation to critical limits. Ambio 30: 2–10.

    PubMed  Google Scholar 

  • Skov, A., 1985. Livssyklus og tetthetsvariasjoner til zooplankton i et skogstjern, Store Finnetjenn, Gjerstad, Aust-Agder 1980–1982. Thesis, Univ. Oslo (Mimeogr. in Norwegian).

  • Snekvik, E., 1974a. Sure innsjöer og fiskebestand. Rapport nr. 2 Rogaland-Agder-Telemark. Direktoratet for vilt og ferskvannfiske, Ås-NLH (Mimeogr. in Norwegian).

  • Snekvik, E., 1974b. Om surt vann og ferskvannsfisk. Klipp fra fiskeriinnspektørens årsmeldinger i årene 1915–1961. Direktoratet for vilt og ferskvannfiske, Ås-NLH (Mimeogr. in Norwegian).

  • Stemberger, R. S., 1985. Prey selection by the copepod Diacyclops thomasi. Oecologia (Berl.) 65: 492–497.

    Google Scholar 

  • Stemberger, R. S., 1990. An inventory of rotifer species diversity of northern Michigan inland lakes. Arch. Hydrobiol. Suppl. 118: 283–302.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1985. Body size, food concentration, and population growth in planktonic rotifers. Ecology 66: 1151–1159.

    Google Scholar 

  • Stemberger, R. S. & J. J. Gilbert, 1987. Defences of planktonic rotifers against predators. In Kerfoot W. C. & A. Sih (eds), Predation: Direct and Indirect Impacts on Aquatic Communities. New England Univ. Press, Hanover, NH: 227–237.

    Google Scholar 

  • Stemberger, R. S., D. P. Larsen & T. M. Kincaid, 2001. Sensitivity of zooplankton for regional lake monitoring. Can. J. Fish. aquat. Sci. 58: 2222–2232.

    Google Scholar 

  • Stenson, J. A. E., 1981. The role of predation in the evolution of morphology, behaviour and life history of two species of Chaoborus. Oikos 37: 323–327.

    Google Scholar 

  • Stenson, J. A. E., 1982. Fish impact on rotifer community structure. Hydrobiologia 87: 57–64.

    Article  Google Scholar 

  • Stenson, J. A. E., 1985. Biotic structures and relations in the acidified Lake Gårdsjön – a synthesis. Ecol. Bull. (Stockholm) 37: 319–326.

    Google Scholar 

  • Stenson, J. A. E., 1990. Creating conditions for changes in prey community structure by Chaoborus spp. in a lake in Sweden. Hydrobiologia 198: 205–214.

    Google Scholar 

  • Stenson, J. A. E., T. Bohlin, L. Henrikson, B.-I. Nilsson, H. G. Nyman, H. G. Oscarson & P. Larsson, 1978. Effects of fish removal from a small lake. Verh. int. Ver. Limnol. 20: 1005–1010.

    Google Scholar 

  • Stenson, J. A. E. & J.-E. Svensson, 1990. Food quality and population density in Asplanchna priodonta. Limnologica 25: 43–47.

    Google Scholar 

  • Stenson, J. & J.-E. Svensson, 1994. Manipulations of planktivore fauna and development of crustacean zooplankton after restoration of the acidified Lake Gårdsjön. Arch. Hydrobiol. 131: 1–23.

    Google Scholar 

  • Stenson, J. A. E., J.-E. Svensson & G. Cronberg, 1993. Changes and interactions in the pelagic community in acidified lakes in Sweden. Ambio 22: 277–282.

    Google Scholar 

  • Sterzynski, W., 1979. Fecundity and body size of planktic rotifers in 30 Polish lakes of various trophic state. Ekol. Pol. 27: 307–321.

    Google Scholar 

  • Stoddard, J. L., C. T. Driscoll, J. S. Kahl & J. H. Kellogg, 1998. Can site-specific trends be extrapolated to a region? An acidification example for the Northeast. Ecol. Appl. 8: 288–299.

    Google Scholar 

  • Svensson, J.-E. & J. A. E. Stenson, 2002. Responses of planktonic rotifers to restoration measures – trophic cascades after liming in Lake Gårdsjön. Arch. Hydrobiol. 153: 301–322.

    Google Scholar 

  • Svensson, J.-E., L. Henrikson, S. Larsson & A. Wilander, 1995. Liming strategies and effects: the Lake Gårdsjön case study. In Henrikson, L. & Y. V. Brodin (eds), Liming of Acidified Surface Waters. Springer Verlag, Berlin: 309–325.

    Google Scholar 

  • Wærvågen, S. B., 1985. En limnologisk studie av Gjerstadvann i Aust-Agder, med spesiell vekt på zooplanktonsamfunnets livshistorier og populasjonsdynamikk. Thesis, Univ. Oslo, (Mimeogr. in Norwegian): 177 pp.

  • Wærvågen, S. B., N. Alstad Rukke & D. O. Hessen, 2002. Calsium content of crustacean zooplankton and its potential role in species distribution. Freshwat. Biol. 47: 1866–1878.

    Google Scholar 

  • Walseng, B. & G. Halvorsen, 1993. Concervation status of watercources in Troms and Finmark, Northern Norway, with a focus on water chemistry and crustaceans. NINA Utredning 54: 1–97 (in Norwegian, Abstact in English).

    Google Scholar 

  • Walz, N., 1997. Rotifer life history strategies and evolution in freshwater plankton communities. In Streit, B., T. Städler & C. M. Lively (eds), Evolutionary Ecology of Freshwater Animals. Birkhäuser Verl., Basel: 119–149.

    Google Scholar 

  • Yan, N. D. & W. Geiling, 1983. Elevated planktonic rotifer biomass in acidified metal-contaminated lakes near Sudbury, Ontario. Hydrobiologia 120: 199–205.

    Google Scholar 

  • Yan, N. D., W. Keller, H. J. MacIsaac & L. J. McEachern, 1991. Regulation of zooplankton community structure of an acidified lake by Chaoborus. Ecol. Appl. 1: 52–65.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wærvågen, S.B., Nilssen, J.P. Major changes in pelagic rotifers during natural and forced recovery from acidification. Hydrobiologia 499, 63–82 (2003). https://doi.org/10.1023/A:1026395602221

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026395602221

Navigation