Skip to main content
Log in

Normal and Atypical Butyrylcholinesterases in Placental Development, Function, and Malfunction

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. In utero exposure to poisons and drugs (e.g., anticholinesterases, cocaine) is frequently associated with spontaneous abortion and placental malfunction. The major protein interacting with these compounds is butyrylcholinesterase (BuChE), which attenuates the effects of such xenobiotics by their hydrolysis or sequestration. Therefore, we studied BuChE expression during placental development.

2. RT-PCR revealed both BuChEmRNA and acetylcholinesterase (AChE) mRNA throughout gestation. However, cytochemical staining detected primarily BuChE activity in first-trimester placenta but AChE activity in term placenta.

3. As the atypical variant of BuChE has a narrower specificity for substrates and inhibitors than the normal enzyme, we investigated its interactions with α-solanine and cocaine, and sought a correlation between the occurrence of this variant and placental malfunction.

4. Atypical BuChE of serum or recombinant origin presented >10-fold weaker affinities than normal BuChE for cocaine and α-solanine. However, BuChE in the serum of a heterozygote and a homozygous normal were similar in their drug affinities. Therefore, heterozygous serum or placenta can protect the fetus from drug or poison exposure, unlike homozygous atypical serum or placenta.

5. Genotype analyses revealed that heterozygous carriers of atypical BuChE were threefold less frequent among 49 patients with placental malfunction than among 76 controls or the entire Israeli population. These observations exclude heterozygote carriers of atypical BuChE from being at high risk for placental malfunction under exposure to anticholinesterases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Balasubramanian, A. S. (1984). Have cholinesterases more than one function? Trends Neurosci. 9:467–468.

    Google Scholar 

  • Booth, A. G., Olaniyan, R. O., and Vanderpuye, O. A. (1980). An improved method for the preparation of human placental syncytiotrophoblast. Placenta 1:327–336.

    Google Scholar 

  • Chasnoff, I. J., Burns, W. J., Schnoll, S. H., and Burns, K. A. (1985). Cocaine use in pregnancy. N. Engl. J. Med. 313:666–669.

    Google Scholar 

  • Chatonnet, A., and Lockridge, O. (1989). Comparison of butyrylcholinesterase and acetylcholinesterase. Biochem. J. 260:625–634.

    Google Scholar 

  • de-Cock, J., Westveer, K., Heederik, D., Te-Velde, E., and Van-Kooij, R. (1994). Time to pregnancy and occupational exposure to pesticides in fruit growers in The Netherlands. Occup. Environ. Med. 51:693–699.

    Google Scholar 

  • Ehrlich, G., Ginzberg, D., Loewenstein, Y., Glick, D., Kerem, B., Ben-Ari, S., Zakut, H., and Soreq, H. (1994). Population diversity and distinct haplotype frequencies associated with ACHE and BCHE genes of Israeli Jews from trans-Caucasian Georgia and from Europe. Genomics 22:288–295.

    Google Scholar 

  • Gatley, S. J. (1991). Activities of the enantiomers of cocaine and some related compounds as substrates and inhibitors of plasma butyrylcholinesterase. Biochem. Pharmacol. 41:1249–1254.

    Google Scholar 

  • Guller, S., Gravanis, A., and Gurpide, E. (1986). Steroid metabolizing enzymes associated with the microvillar membrane of human placenta. J. Steroid Biochem. 24:935–944.

    Google Scholar 

  • Hahn, T., Desoye, G., Land, I., and Skofitsch, G. (1993). Location and activities of acetylcholinesterase and butyrylcholinesterase in the rat and human placenta. Anat. Embryol. 188:435–440.

    Google Scholar 

  • Jbilo, O., Bartels, C. F., Chatonnet, A., Toutant, J.-P., and Lockridge, O. (1994). Tissue distribution of human acetylcholinesterase and butyrylcholinesterase messenger RNA. Toxicon 32:1445–1457.

    Google Scholar 

  • Jeong, T. C., Jordan, S. D., Matulka, R. A., Stanulis, E. D., Kamiski, E. J., and Holsapple, M. P. (1995). Role of metabolism by esterase and cytochrome P-450 in cocasine-induced suppression of the antibody response. J. Pharmacol. Exp. Ther. 272:407–416.

    Google Scholar 

  • Jones, C. J. P., and Fox, H. (1991). Ultrastructure of the normal human placenta. Electron Microsc. Rev. 4:129–178.

    Google Scholar 

  • Karnovsky, M. J., and Roots, L. (1964). A direct coloring thiocholine method for cholinesterases. J. Histochem. Cytochem. 12:219–221.

    Google Scholar 

  • Karpel, R., Ben Aziz-Aloya, R., Sternfeld, M., Ehrlich, G., Ginzberg, D., Tarroni, P., Clementi, F., Zakut, H., and Soreq, H. (1994). Expression of three alternative acetylcholinesterase messenger RNAs in human tumor cell lines of different tissue origins. Exp. Cell Res. 210:268–277.

    Google Scholar 

  • Khalfoun, B., Lacord-Bonneau, M., Degenne, D., Clement, L., and Bardos, P. (1986). Characterization of the human syncytiotrophoblast plasma membrane associated components. Int. J. Biochem. 18:351–360.

    Google Scholar 

  • Layer, L. G., and Willbold, E. (1995). Novel functions of cholinesterases in development, physiology and disease. Prog. Histochem. Cytochem. 29:1–93.

    Google Scholar 

  • LeDuc, B. W., Sinclair, P. R., Walton, H. S., Sinclair, J. R., Greenblatt, D. J., and Schuster, L. (1994). Cocaine toxicity in cultured chicken hepatocytes: Role of cytochrome P-450. Toxicol. Appl. Pharmacol. 125:322–332.

    Google Scholar 

  • Lev-Lehman, E., Ginzberg, D., Hornreich, G., Ehrlich, G., Meshorer, A., Eckstein, F., Soreq, H., and Zakut, H. (1994). Antisense inhibition of acetylcholinesterase gene expression causes transient hematopoietic alterations in vivo. Gene Ther. 1:127–135.

    Google Scholar 

  • Levene, C., Steinberg, A. G., Friedlander, Y., Brautbar, C., and Cohen, T. (1984). Genetic polymorphisms among Bukharan and Georgian Jews in Israel. Am. J. Med. Genet. 19:623–641.

    Google Scholar 

  • Liao, J., Mortensen, V., Norgaard-Pedersen, B., Koch, C., and Brodbeck, U. (1993). Monoclonal antibodies against brain acetylcholinesterase which recognize the subunits bearing the hydrophobic anchor. Eur. J. Biochem. 215:333–340.

    Google Scholar 

  • Lockridge, O. (1990). Genetic variants of serum cholinesterase influence metabolism of the muscle relaxant succinylcholine. Pharmacol. Ther. 47:35–60.

    Google Scholar 

  • Lockridge, O., Bartels, C. F., Zelinski, T., Jbilo, O., and Kris, M. (1992). Part 1: Genetic variant of human acetylcholinesterase. 2. SV-40 transformed cell lines, for example COS-1, but not parental untransformed cell lines, express butyrylcholinesterase (BCHE). In Multidisciplinary Approaches to Cholinesterase Functions (A. Shafferman and B. Velan, Eds.), Plenum Press, New York, pp. 53–59.

    Google Scholar 

  • Loewenstein, Y., Denarie, M., Zakut, H., and Soreq, H. (1993). Molecular dissection of the cholinesterase domains responsible for carbamate toxicity. Chem.-Biol. Interact. 87:209–216.

    Google Scholar 

  • Loewenstein-Lichtenstein, Y., Schwarz, M., Glick, D., Norgaard-Pedersen, B., Zakut, H., and Soreq, H. (1995). Predisposition to adverse consequences of anti-cholinesterase therapies in “atypical” BCHE carriers. Nature Med. 1:1082–1085.

    Google Scholar 

  • MacGregor, S. N., Keith, L. G., Chasnoff, I. J., Rosner, M. A., Chisum, G. M., Slaw, P., and Minogue, J. P. (1987). Cocaine use during pregnancy: Adverse prenatal outcome. Am. J. Obstet. Gynecol. 157:686–690.

    Google Scholar 

  • Massoulié, J., Pezzementi, L., Bon, S., Krejci, E., and Vallette, J. M. (1993). Molecular and cellular biology of the cholinesterases. Prog. Neurobiol. 41:31–91.

    Google Scholar 

  • May, D. G. (1994). Genetic differences in drug disposition. J. Clin. Pharmacol. 34:881–897.

    Google Scholar 

  • McGuire, M. C., Noguiera, C. P., Bartels, C. F., Lightsone, H., Hajara, A., van der Spek, A. F. L., Lockridge, O., and La Du, B. N. (1989). Identification of the structural mutation responsible for the dibucaine-resistant (atypical) variant form of human serum cholinesterase. Proc. Natl. Acad. Sci. USA 86:953–957.

    Google Scholar 

  • Neville, L. F., Gnatt, A., Padan, R., Seidman, S., and Soreq, H. (1990). Anionic site interactions in human butyrylcholinesterase disrupted by two adjacent single point mutations. J. Biol. Chem. 265:20735–20738.

    Google Scholar 

  • Neville, L. F., Gnatt, A., Loewenstein, Y., Seidman, S., Ehrlich, G., and Soreq, H. (1992). Intramolecular relationships in cholinesterases revealed by oocyte expression of site-directed and natural variants of human BCHE. EMBO J. 11:1641–1649.

    Google Scholar 

  • Peretti, F. J., Isenchmid, D. S., Levine, B., Caplan, Y. H., and Smialek, J. E. (1990). Cocaine fatality: An unexplained blood concentration in a fatal overdose. Forens. Sci. Int. 48:135–138.

    Google Scholar 

  • Prody, C. A., Zevin-Sonkin, D., Gnatt, A., Goldberg, O., and Soreq, H. (1987). Isolation and characterization of full-length cDNA clones coding for cholinesterase from fetal human tissues. Proc. Natl. Acad. Sci. USA 84:3555–3559.

    Google Scholar 

  • Rachmilewitz, J., Elkin, M., Rosensaft, J., Gelman-Kohan, Z., Ariel, I., Lustig, O., Schneider, T., Goshen, R., Biran, H., de Groot, N., and Hochberg, A. (1995). H19 expression and tumorigenicity of choriocarcinoma derived cell lines. Oncogene 11:863–870.

    Google Scholar 

  • Rakonczay, Z., and Brimijoin, S. (1988). Biochemistry and pathophysiology of the molecular forms of cholinesterases. In Subcellular Biochemistry (J. Harris, Ed.), Plenum, New York, Vol. 12, pp. 335–378.

    Google Scholar 

  • Rama Sastry, B. V., and Sadovinguad, C. (1979). Cholinergic systems in non-nervous tissues. Pharmacol. Rev. 30:65–132.

    Google Scholar 

  • Ratner, D., Oren, B., and Vigder, K. (1983). Chronic dietary anticholinesterase poisoning. Isr. J. Med. Sci. 19:810–814.

    Google Scholar 

  • Roe, D. A., Little, B. B., Bawdon, R. E., and Gilstrup, L. C. (1990). Metabolism of cocaine by human placentas: Implications for fetal exposure. Am. J. Obstet. Gynecol. 163:715–718.

    Google Scholar 

  • Schwarz, M., Glick, D., Loewenstein, Y., and Soreq, H. (1995a). Engineering of human cholinesterases explains and predicts diverse consequences of administration of various drugs and poisons. Pharmacol. Ther. 67:283–332.

    Google Scholar 

  • Schwarz, M., Loewenstein-Lichtenstein, Y., Liao, J., Norgaard-Pedersen, B., and Soreq, H. (1995b). Successive organophosphate inhibition and oxime reactivation reveals distinct responses of recombinant human cholinesterase variants. Mol. Brain Res. 31:101–110.

    Google Scholar 

  • Seidman, S., Sternfeld, M., Ben Aziz-Aloya, R., Timberg, R., Kaufer-Nachum, D., and Soreq, H. (1995). Synaptic and epidermal accumulation of human acetylcholinesterase is encoded by alternative 3′-terminal exons. Mol. Cell Biol. 14:459–473.

    Google Scholar 

  • Sherman, J. D. (1997). Chlorphyrifos (dursban) associated birth defects report of four cases. Arch. Environ. Health Int. J. 51 (in press).

  • Simone, C., Derewlany, L. O., Oskamp, M., Johnson, D., Knie, B., and Koren, G. (1994). Acetylcholinesterase and butyrylcholinesterase activity in the human term placenta: Implications for fetal cocaine exposure. J. Lab. Clin. Med. 123:400–406.

    Google Scholar 

  • Soreq, H., and Zakut, H. (1993). Human Cholinesterases and Anticholinesterases, Academic Press, San Diego, CA.

    Google Scholar 

  • Soreq, H., Ben-Aziz, R., Prody, C. A., Gnatt, A., Neville, L., Lieman-Hurwitz, J., Lev-Lehman, E., Ginzberg, D., Seidman, S., Lapidot-Lifson, Y., and Zakut, H. (1990). Molecular cloning and construction of the coding region for human acetylcholinesterase reveals a G, C-rich attenuating structure. Proc. Natl. Acad. Sci. USA 87:9688–9692.

    Google Scholar 

  • Szeinberg, A., Pipano, S., Assa, M., Medalie, J. H., and Neufeld, H. N. (1992). High frequency of atypical pseudocholinesterase among Iraqi and Iranian Jews. Clin. Genet. 3:123–127.

    Google Scholar 

  • Tabacova, S., and Balabaeva, L. (1993). Environmental pollutants in relation to complications of pregnancy. Environ. Health Perspect. 101:27–31.

    Google Scholar 

  • Valentino, R. J., Lockridge, O., Eckerson, H. W., and La Du, B. N. (1981). Prediction of drug sensitivity in individuals with atypical serum cholinesterase based on in vitro biochemical studies. Biochem. Pharmacol. 30:1643–1649.

    Google Scholar 

  • Volpe, J. J. (1992). Effect of cocaine use on the fetus. N. Engl. J. Med. 327:399–406.

    Google Scholar 

  • Whittaker, M. (1986). Cholinesterases, Karger, Basel.

    Google Scholar 

  • Whyte, A. (1983). Biochemistry of the human syncytiotrophoblast plasma membrane. In Biology of Trophoblast (Y. W. Loke and A. Whyte, Eds.), Elsevier Science BV, Amsterdam, pp. 513–533.

    Google Scholar 

  • Wu, D., and Hersh, L. B. (1994). Choline acetyltransferase: Celebrating its fiftieth year. J. Neurochem. 62:1653–1663.

    Google Scholar 

  • Zakut, H., Lieman-Hurwitz, J., Zamir, R., Sindell, L., Ginzberg, D., and Soreq, H. (1991). Chorionic villi cDNA library displays expression of butyrylcholinesterase: Putative genetic disposition for ecological danger. Prenat. Diag. 11:597–607.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sternfeld, M., Rachmilewitz, J., Loewenstein-Lichtenstein, Y. et al. Normal and Atypical Butyrylcholinesterases in Placental Development, Function, and Malfunction. Cell Mol Neurobiol 17, 315–332 (1997). https://doi.org/10.1023/A:1026394302076

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026394302076

Navigation