Skip to main content
Log in

Ceramic Castables — Final Stage in the Evolution of Low-Cement Refractory Castables. Part 3

  • Published:
Refractories and Industrial Ceramics Aims and scope

Abstract

Technological and service characteristics of ceramic castables and low-cement refractory castables (LCRCs) are compared. Unlike LCRCs prepared from dry-ground powders, the ceramic castables contain a nanoparticle phase (5 – 100 nm), which to a significant extent determines their operational properties. The initial mechanical strength of ceramic binders can be increased substantially by adding water-soluble resins to their composition. A way toward developing oxide-carbon ceramic castables is outlined. Compositions for binding agents with enhanced high-temperature strength are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Yu. E. Pivinskii, Refractories in the 21th Century [in Russian], BelGTASM Publishers, Belgorod (1999).

    Google Scholar 

  2. “Japanese refractory output 1997–2000, ” Industr. Minerals, April, 27 (2001).

  3. T. Morimoto, “Unshaped refractories and their potential demand in the market, ” Taikabutsu Refractories, 34(12), 701–705 (1982).

    Google Scholar 

  4. Ch. Parr, C. Revais, N. Bunt, et al., “Aging a low cement castable, ” in: Proceedings of Unitecr-97, New Orleans (1997), pp. 81–90.

  5. E. M. Grishpun, Yu. E. Pivinskii, E. V. Rozhkov, et al., “Production Technology and service of high-alumina ceramic castable. 1. Ramming mixtures based modified bauxite HCBS, ” Ogneup. Tekh. Keram., No. 3, 37–41 (2000).

    Google Scholar 

  6. Yu. E. Pivinskii, K. V. Timoshenko, A. V. Cherevatova, et al., “Materials based on highly concentrated ceramic binding suspensions (HCBS). Molding and strength of silica mixtures based on plasticized quartz sand HCBS, ” Ogneup. Tekh. Keram., No. 8, 7–10 (1999).

    Google Scholar 

  7. E. V. Rozhkov, Yu. E. Pivinskii, M. Z. Naginskii, et al., “Production and service of high-alumina castables. 2. Properties and service of vibration-placed castables based on bauxite-modified highly concentrated ceramic binding suspensions (HCBS) for use in blast-furnace runners, ” Ogneup. Tekh. Keram., No. 5, 37–44 (2001).

    Google Scholar 

  8. Yu. E. Pivinskii, Ceramic Binding Agents and Ceramic Castables [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  9. Yu. E. Pivinskii, A Technology for Manufacture and Industrial-Scale Testing of Thixotropic Vibration-Cast Mixtures (Ceramic Castables) in Steelmaking Units. Report to the All-Russia Institute for Refractory Materials [in Russian], Leningrad (1990).

  10. Yu. E. Pivinskii, “Ceramic castables — the final stage in the evolution of low-cement refractory castables (Part 1), ” Ogneup. Tekh. Keram., No. 1, 11–15 (2000).

    Google Scholar 

  11. T. Schraven, “High wear resistant spinel ceramics for slide and purging systems, ” Pahage Feuerfeste Erzeugnisse (FRG), Prospectus (1998).

  12. R. Krebs, “Modern solution of refractory problems with unshaped refractories, ” in: Proceedings of the Unified International Conference of Refractories: Unitecr-99, Berlin (1999), pp. 1–5.

  13. P. Dyubrei and V. M. Solov'ev, “Andalusite—a promising material for the production of high-quality refractories, ” Ogneup. Tekh. Keram., No. 4, 24–30 (1999).

    Google Scholar 

  14. P. L. Mityakin and Yu. E. Pivinskii, “Properties of a quartzbased ceramic castable, ” Ogneupory, No. 9, 55–59 (1980).

    Google Scholar 

  15. V. A. Doroganov and Yu. E. Pivinskii, “Refractory plastic mixtures based on highly concentrated binding suspensions (HCBSs). Structural and mechanical properties of plasticized mixtures and materials based on bauxite HCBSs, ” Ogneup. Tekh. Keram., No. 4, 18–23 (2001).

    Google Scholar 

  16. G. S. Khodakov, Physics of Disintegration [in Russian], Nauka, Moscow (1972).

    Google Scholar 

  17. G. S. Khodakov, “Physicochemical mechanics of solid disintegration, ” Kolloid. Zh., 60(5), 684–698 (1998).

    Google Scholar 

  18. D. Van Harssel, J. O. Laureh, and A. Boor, “Synthetic raw materials — a key to advanced technologies in the production of refractories, ” in: Vestnik UGTU – UPI, No. 1: Proceedings of the International Conference “Physical Chemistry and Technology of Oxide-Silicate Materials” [in Russian], Ekaterinburg (2000), pp. 3–26.

  19. Alcoa Refractory Raw Materials: Applications. An Alcoa Report to a Workshop Held at the Pervoural'skii Dinas Plant, February 16, 2000.

  20. Yu. E. Pivinskii, F. S. Kaplan, S. G. Semikova, and M. A. Trubitsyn, “Highly concentrated ceramic binding suspensions. The colloid component and binding properties, ” Ogneupory, No. 2, 13–18 (1989).

    Google Scholar 

  21. B. D. Summ and N. I. Ivanova, “Objects and methods of colloid chemistry in nanochemistry, ” Usp. Khim., 69(11), 995–1008 (2000).

    Google Scholar 

  22. M. N. Rittner, “Ideas flow at fine, ultrafine and nanopowders' 99, ” Am. Ceram. Soc. Bull., No. 2, 64–67 (2000).

    Google Scholar 

  23. Yu. E. Pivinskii and M. A. Trubitsyn, “Highly concentrated ceramic binding suspensions. Dispersion medium, stabilization and binding properties, ” Ogneupory, No. 12, 9–14 (1987).

    Google Scholar 

  24. Yu. E. Pivinskii and A. G. Romashin, Quartz Ceramics [in Russian], Metallurgiya, Moscow (1974).

    Google Scholar 

  25. Yu. E. Pivinskii, “From quartz ceramics towards ceramic binders and ceramic castables, ” in: Proceedings of a Festive Research Conference Devoted to the 85th Anniversary of A. M. Prokhorov's Birth [in Russian], St. Petersburg State Technological Institute (Technical University), St. Petersburg (2001), pp. 148–153.

    Google Scholar 

  26. I. O. Elin and O. A. Tarakhtunov, Aminoplasts and Carbamide Plastics. Encyclopedia of Polymers. Vol. 1 [in Russian], Sovetskaya Éntsiklopediya, Moscow (1972), pp. 110–116.

    Google Scholar 

  27. B. B. Gulyaev, P. A. Kornyushkin, and A. V. Kuzin, Molding Processes [in Russian], Mashinostroenie, Leningrad (1987).

    Google Scholar 

  28. L. M. Khananashvili and K. A. Andrianov, Technology of Organoelemental Monomers and Polymers [in Russian], Khimiya, Moscow (1983).

    Google Scholar 

  29. I. D. Kashcheev, Oxide-Carbon Refractories [in Russian], Intermet Engineering, Moscow (2000).

    Google Scholar 

  30. A. Petzold and I. Ulbricht, Feuerbeton and Betonartige Feuerfeste Massen und Materialien, Deutscher Verlag für Grundstoff-Industrie, Leipzig, Stuttgart (1994).

    Google Scholar 

  31. Yu. E. Pivinskii, “Structural ceramics: technology and problems, ” in: Chemistry and Technology of Silicate and High-Melting Nonmetallic Materials [in Russian], Nauka, Leningrad (1989), pp. 109–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pivinskii, Y.E., Rozhkov, E.V. Ceramic Castables — Final Stage in the Evolution of Low-Cement Refractory Castables. Part 3. Refractories and Industrial Ceramics 44, 134–140 (2003). https://doi.org/10.1023/A:1026391915300

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026391915300

Keywords

Navigation