Skip to main content
Log in

Amorphous ferroelectric thin film capacitive device for hydrogen detection

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hydrogen is a promising alternative energy source for next generation automobile engines that meet the concern of energy shortage and global environmental pollution. Hydrogen detection is an important associated technology to be developed. The recently developed amorphous ferroelectric thin film capacitive gas sensors with a largely improved sensitivity to hydrogen show a great potential for this associated technology. This review presents an overall picture of amorphous ferroelectric thin film hydrogen gas sensors. It focuses on the correlation among processing, microstructural evolution and electrical properties of amorphous ferroelectric thin films. An attempt is made to detail the hydrogen sensitivity and transient response of various prototype capacitive devices with respect to the quality of the films and the hydrogen kinetic processes in the Pd/ferroelectric heterostructure. Recent advances on the hydrogen interface-blocking model for amorphous ferroelectric gas sensors are also described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. C. Madou and S. R. Morrison, “Chemical Sensing with Solid State Devices” (New York, Academic Press, 1989).

    Google Scholar 

  2. A. Mandelis and C. Christofides, “Physics, Chemistry and Technology of Solid State Gas Sensor Devices” (Wiley Interscience, 1993).

  3. K. I. LundstrÖm, S. Shivaraman, C. Svensson and L. Lundkvist, Appl. Phys. Lett. 26 (1975) 55.

    Google Scholar 

  4. K. I. LundstrÖm, S. Shivaraman and C. Svensson, J. Appl. Phys. 46 (1975) 3876.

    Google Scholar 

  5. K. I. LundstrÖm and C. Svensson, “Gas-Sensitive Metal Gate Semiconductor Devices” in “Solid State Chemical Sensors,” edited by J. Janata and R. J. Huber (New York, Academic Press, 1985) p. 1.

    Google Scholar 

  6. M. Eriksson, I. LundstrÖm and L. G. Ekedahl, J. Appl. Phys. 82 (1997) 3143.

    Google Scholar 

  7. J. Fogelberg, M. Eriksson, H. Dannetun and L. G. Petersson, ibid. 78 (1995) 988.

    Google Scholar 

  8. J. Fogelberg and L.-G. Petersson, Surf. Sci. 350 (1996) 91.

    Google Scholar 

  9. K. Dobos, M. Armgarth, G. Zimmer and I. LundstrÖm, IEEE Trans. Electron Devices 31 (1984) 508.

    Google Scholar 

  10. S. Okuyama, N. Takinami, Y. Chiba, S. Ohshima and S. Kambe, J. Appl. Phys. 76 (1997) 231.

    Google Scholar 

  11. S. Okuyama, K. Umemoto and K. Okuyama, Jpn. J. Appl. Phys. 36 (1997) 1228.

    Google Scholar 

  12. A. Arbab, A. Spetz and I. LundstrÖm, Sensors and Actuators B 15/16 (1993) 19.

    Google Scholar 

  13. L. Y. Chen, G. W. Hunter, P. G. Neudeck, G. Bansal, J. B. Petit and D. Knight, J. Vac. Sci. Tech. A 15 (1997) 1228.

    Google Scholar 

  14. A. Baranzahi, A. L. Spetz, B. Anderson and I. LundstrÖm, Sensors and Actuators B 26/27 (1996) 165.

    Google Scholar 

  15. S. Basu and A. Dutta, ibid. 22 (1994) 83.

    Google Scholar 

  16. H. Kobayashi, K. Kishimoto and Y. Nakato, Surf. Sci. 306 (1994) 393.

    Google Scholar 

  17. W. P. Kang and Y. GÜrbÜz, J. Appl. Phys. 75 (1994) 8175.

    Google Scholar 

  18. W. P. Kang, Y. Gurbuz, J. L. Davidson and D. V. Kerns, Sensors and Actuators B 24/25 (1995) 421.

    Google Scholar 

  19. Y. Gurbuz, W. P. Kang, J. L. Davidson, D. L. Kinser and D. V. Kerns, ibid. 33 (1996) 100.

    Google Scholar 

  20. W. G. Zhu, O. K. Tan and X. Yao, J. Appl. Phys. 84 (1998) 5134.

    Google Scholar 

  21. W. Zhu, O. K. Tan, M. S. Tse and X. Yao, J. Korean Phys. Soc. 32 (1998) s1778.

    Google Scholar 

  22. J. Deng, W. Zhu and O. K. Tan, Sensors and Actuators B 77 (2001) 416.

    Google Scholar 

  23. W. G. Zhu, O. K. Tan, J. Deng and X. Yao, Ferroelectrics 232 (1999) 165.

    Google Scholar 

  24. W. G. Zhu, J. Deng, O. K. Tan and X. F. Chen, Asian Ceram. Sci. Electr. I: Key Eng. Mater. 7 (2002) 183.

    Google Scholar 

  25. W. G. Zhu, O. K. Tan, Q. Yan and J. T. Oh, Sensors & Actuators B 65 (2000) 366.

    Google Scholar 

  26. T. Iizuka, K. Arita, I. Yamamoto, S. Yamamichi, H. Yamaguchi, T. Matsuki, S. Sone, H. Yabuta, Y. Miyasaka and Y. Kato, Jpn. J. Appl. Phys. 39 (2000) 2063.

    Google Scholar 

  27. J. H. Ahn, P. C. McIntyre, L. W. Mirkarimi, S. R. Gilbert, J. Amano and M. Schulberg, Appl. Phys. Lett. 77 (2000) 1378.

    Google Scholar 

  28. J. D. Baniecki, R. B. Laibowitz, T. M. Shaw, C. Parks, J. Lian, H. Xu and Q. Y. Ma, J. Appl. Phys. 89 (2001) 2873.

    Google Scholar 

  29. W. G. Zhu, O. K. Tan, J. Deng and J. T. Oh, J. Mater. Res. 15 (2000) 1291.

    Google Scholar 

  30. O. K. Tan, X. F. Chen and W. G. Zhu, Ferroelectrics 225 (1999) 295.

    Google Scholar 

  31. X. F. Chen, W. G. Zhu, O. K. Tan and M. S. Tse, ibid. 232 (1999) 71.

    Google Scholar 

  32. X. F. Chen, W. G. Zhu and O. K. Tan, Mater. Sci. Eng. B 77 (2000) 177.

    Google Scholar 

  33. J. Deng, “Ferroelectric Thin Films for Hydrogen Gas Sensor,” PhD thesis of Nanyang Tech. Univ., Singapore, 2001.

  34. Y. Ikeuchi, S. Kojima and T. Yamamoto, Jpn. J. Appl. Phys. 36 (1997) 2985.

    Google Scholar 

  35. Y. I. Yuzyuk, R. Farhi, V. L. Lorman, L. M. Rabkin, L. A. Sapozhnikov, E. V. Sviridov and I. N. Zakharchenko, J. Appl. Phys. 84 (1998) 452.

    Google Scholar 

  36. W. Zhu, Z. Q. Liu, W. Lu, M. S. Tse, H. S. Tan and X. Yao, ibid. 79 (1996) 4283.

    Google Scholar 

  37. B. Mihailova, S. Stoyanov, V. Gaydarov, M. Gospodinov and L. Konstantinov, Solid State Commun. 103 (1997) 623.

    Google Scholar 

  38. M. H. Lee and B. C. Choi, J. Amer. Ceram. Soc. 74 (1991) 2309.

    Google Scholar 

  39. D. Bersani, P. P. Lottici, A. Montenero, S. Pigoni and G. Ganappi, J. Mater. Sci. 31 (1996) 3153.

    Google Scholar 

  40. O. K. Tan, W. G. Zhu, M. S. Tse and X. Yao, Mater. Sci. Eng. B 58 (1999) 221.

    Google Scholar 

  41. R. Liedtke, M. Grossmann and R. Waser, Appl. Phys. Lett. 77 (2000) 2045.

    Google Scholar 

  42. J. F. Scott, Ferr. Rev. 1 (1998) 1.

    Google Scholar 

  43. J. Deng, X. F. Chen, O. K. Tan and W. G. Zhu, “International Conf. on Mass and Charge Transport 2000” (Venice, Italy, 2000).

  44. I. Suzuki, M. Ejima, K. Watanake, Y. Xiong and T. Saitoh, Thin Solid Films 313/314 (1998) 214.

    Google Scholar 

  45. M. A. Lampert and P. Mark, “Current Injection in Solids” (New York, Academic Press, 1970).

    Google Scholar 

  46. C. Hamann, H. Burghardt and T. Frauenheim, “Electrical Conduction Mechanisms in Solids” (Berlin, Deutscher Verlag der Wissenschaften, 1988).

    Google Scholar 

  47. A. K. Jonscher, “Dielectric Properties: A Review of Data and Their New Interpretation” (New York, Academic Press, 1980).

    Google Scholar 

  48. C. R. Crowell and S. M. Sze, Solid-State Electr. 9 (1966) 1035.

    Google Scholar 

  49. J. Deng, W. G. Zhu, O. K. Tan, X. F. Chen and X. Yao, Ferroelectrics 263 (2001) 181.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tan, O.K., Chen, X.F. & Zhu, W. Amorphous ferroelectric thin film capacitive device for hydrogen detection. Journal of Materials Science 38, 4353–4363 (2003). https://doi.org/10.1023/A:1026391201889

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026391201889

Keywords

Navigation