Skip to main content
Log in

Densities and Apparent Molar Volumes of Aqueous NaNO3 Solutions at Temperatures from 292 to 573 K and at Pressures Up to 30 MPa

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities of four aqueous NaNO3 solutions (0.100, 0.303, 0.580, 0.892 mol-kg−1 H2O) have been measured in the liquid phase with a constant-volume piezometer immersed in a precision liquid thermostat. Measurements were made at ten isotherms between 292 and 573 K. The range of pressure was 0.1–30 MPa. The total uncertainty of density, pressure, temperature, and concentration measurements were estimated to be less than 0.06%, 0.05%, 10 mK, and 0.014%, respectively. Values of saturated densities were determined by extrapolating experimental P-ρ data to the vapor pressure at fixed temperature and composition. Apparent molar volumes were derived using measured values of density for the solutions and for pure water. The apparent molar volumes were extrapolated to zero concentration to yield partial molar volumes at infinite dilution. The temperature, pressure, and concentration dependence of partial and apparent molar volumes were studied. The measured values of density and apparent and partial molar volume were compared with data reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. D. Azizov, T. S. Akhundov, and L. A. Azizova, Russ. J. High Temp. 34, 973(1996).

    Google Scholar 

  2. N. D. Azizov and T. S. Akhundov, Russ. J. Appl. Chem. 12, 1955(1997).

    Google Scholar 

  3. N. D. Azizov, Russ. J. Inorg. Chem. 43, 323(1998).

    Google Scholar 

  4. N. D. Azizov and T. S. Akhundov, Russ. J. High Temp. 36, 385(1998).

    Google Scholar 

  5. N. D. Azizov and T. S. Akhundov, Russ. J. High Temp. 38, 220(2000).

    Google Scholar 

  6. I. M. Abdulagatov and N. D. Azizov, J. Chem. Thermodyn. in press, (2003).

  7. I. M. Abdulagatov and N. D. Azizov, Fluid Phase Equilbria in press, (2003).

  8. R. Mitzner and H. Gehlen, Z. Phys. Chem. 221, 410(1962).

    Google Scholar 

  9. P. I. Protsenko, O. H. Razumovskaya, and T. I. Ivleva, Russ. J. Appl. Chem. 40, 2576(1967).

    Google Scholar 

  10. L. P. Shpigel and K. P. Mishchenko, Leningrad Technol. Inst. Rep. 21, 249(1968).

    Google Scholar 

  11. T. V. Mozharova, G. A. Vernigora, and E. L. Chernn'kaya, NIOKHIM Rep. No. 81059147, vol.2 1984.

  12. M. Nehma, J. M. Sangster, and H. P. Schreiber, J. Chem. Eng. Data. 22, 156(1977).

    Google Scholar 

  13. M. A. Berchiesi, G. Berchiesi, and G. Vitali, J. Chem. Eng. Data 24, 213(1979).

    Google Scholar 

  14. M. A. Berchiesi, G. Berchiesi, and G. G. Lobbia, J. Chem. Eng. Data 19, 326(1974).

    Google Scholar 

  15. B. A. Patterson and E. M. Woolley, J. Chem. Thermodyn. 34, 535(2002).

    Google Scholar 

  16. O. Enea, P. P. Singh, E. M. Woolley, K. G. McCurdy, and L. G. Hepler, J. Chem. Thermodyn. 9, 731(1977).

    Google Scholar 

  17. G. J. Janz, B. G. Oliver, G. R. Lakshminarayanan, and G. E. Mayer, J. Phys. Chem. 74, 1285(1970).

    Google Scholar 

  18. F. J. Millero, G. K. Ward, and P. V. Chetirkin, J. Acoust. Soc. Amer. 61, 1492(1977).

    Google Scholar 

  19. A. Roux, G. M. Musbally, G. Perron, and J. E. Desnoyers, Can, J. Chem. 56, 24(1978).

    Google Scholar 

  20. L. V. Puchkov, V. G. Matashkin, and R. P. Matveeva, Russ. J. Appl. Chem. 52, 1015(1979).

    Google Scholar 

  21. T. Isono, J. Chem. Eng. Data 29, 45(1984).

    Google Scholar 

  22. O. M. Traktuev and V. P. Ptizyna, Experimental Investigation of the Density of Aqueous NaNO3, NaNO2, KNO3, and Their Solutions. Deposited in VINITI, No. 3572-B89, Data 30.05.1989.

  23. M. Pilar Pena, E. Vercher, and A. Martinez-Andreu, J. Chem. Eng. Data 43, 626(1998).

    Google Scholar 

  24. P. Novotny and O. Sohnel, J. Chem. Eng. Data 33, 49(1988).

    Google Scholar 

  25. G. G. Aseyev and I. D. Zaytsev, Volumetric Properties of Electrolyte Solutions. Estimation Methods and Experimental Data (Begell House, New York, 1996).

    Google Scholar 

  26. I. D. Zaytsev and G. G. Aseyev, Properies Aqueous Solutions of Electrolytes (CRC Press, Boca Raton, FL, 1992).

    Google Scholar 

  27. F. G. Keyes and L. B. Smith, Proc. Amer. Acad. Arts Sci. 68, 505(1933).

    Google Scholar 

  28. W. Wagner and A. Pruβ J. Phys. Chem. Ref. Data 31, 387(2002).

    Google Scholar 

  29. F. J. Millero, In Water and Aqueous Solutions, Structure, Thermodynamics, and Transport Properties, R. A. Horne, ed. Wiley (Interscience), New York, 1972, chap. 13.

    Google Scholar 

  30. K. Fajans and O. Johnson, J. Amer. Chem. Soc 64, 668(1942).

    Google Scholar 

  31. E. Zen, Geochim. Cosmochim. Acta 12, 103(1957).

    Google Scholar 

  32. J. M. H. Levelt Sengers, In Supercritical Fluid Technology, J. F. Ely and T. J. Bruno, eds. (CRC Press, Boca Raton, FL, 1991), p. 1.

    Google Scholar 

  33. I. M. Abdulagatov, A. R. Bazaev, R. K. Gasanov, E. A. Bazaev, and A. E. Ramazanova, J. Supercritical Fluids 10, 149(1997).

    Google Scholar 

  34. M. Obšil, V. Majer, G.T. Hefter, and V. Hynek, J. Chem. Eng. Data 42, 137(1997).

    Google Scholar 

  35. L. Hnêdkovsky, V. Majer, and R. H. Wood, J. Chem. Thermodyn. 27, 801(1995).

    Google Scholar 

  36. D. O. Masson, Phil. Mag. 8, 218(1929).

    Google Scholar 

  37. O. Redlich and P. Rosenfeld, Z. Phys. Chem. A 155, 61(1931).

    Google Scholar 

  38. O. Redlich and P. Rosenfeld, Z. Elektrochem. 37, 705(1931).

    Google Scholar 

  39. B. S. Krumgalz, R. Pogorelsky, and K. S. Pitzer, J. Phys. Chem. Ref. Data 25, 663(1996).

    Google Scholar 

  40. O. Redlich and D. M. Mayer, Chem. Rev. 64, 221(1964).

    Google Scholar 

  41. T. H. Doan and J. Sangster, J. Chem. Eng. Data 26, 141(1981).

    Google Scholar 

  42. F. J. Millero, Chem. Rev. 71, 141(1971).

    Google Scholar 

  43. C. Drucker, Arkiv Kemi. Min. Geol. A 14, 1(1941).

    Google Scholar 

  44. R. A. Robinson, J. Amer. Chem. Soc. 59, 84(1937).

    Google Scholar 

  45. P. J. Gellings, Rec. Trav. Chim. Pays-Bas, 75, 209(1956).

    Google Scholar 

  46. E. D. Volova and I. M. Egorov, Leningrad Technol. Inst. Rep. 61, 52(1960).

    Google Scholar 

  47. J. A. Beattie, In International Critical Tables of Numerical Data, Physics, Chemistry and Technology, Vol. III. E. W. Washburn, ed. (McGraw-Hill, New York, 1928).

    Google Scholar 

  48. F. T. Gucker, Jr., J. Phys. Chem. 38, 307(1934).

    Google Scholar 

  49. R. J. Meyer, Gmelins Handbuch der Anorganischen Chemie. Natrium (System-Nummer 21) (Verlag Chemie, Weinheim, 1928).

    Google Scholar 

  50. R. J. Meyer, Gmelins Handbuch der Anorganischen Chemie. Natrium (System-Nummer 21), Suppl. Volume, Sect. 3 (Verlag Chemie, Weinheim, 1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdulagatov, I.M., Azizov, N.D. Densities and Apparent Molar Volumes of Aqueous NaNO3 Solutions at Temperatures from 292 to 573 K and at Pressures Up to 30 MPa. Journal of Solution Chemistry 32, 573–599 (2003). https://doi.org/10.1023/A:1026388205205

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026388205205

Navigation