Skip to main content
Log in

Tin dioxide gas sensor as a tool for atmospheric pollution monitoring: Problems and possibilities for improvements

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The monitoring of atmospheric pollution needs network of gas sensors in order to increase the number of measuring points. For this goal, tin dioxide sensors have been evaluated. Their potentials and limitations (selectivity and stability), are presented via on-site experiments of urban pollution control. The study shows that some global information indicating mainly the traffic pollution can be obtained. The general problem of long-term stability and selectivity of SnO2 sensors is discussed. Some specific solutions are proposed, for example, a chemical treatment in the case of instability due to SO2. The problem of the dual response to oxidising and reducing gases is discussed, especially in regard to CO/NO2 detection. To solve this problem, the use of active filters is proposed. For example, a thin film of rhodium deposited above the sensing material allows to filter NO2. The use of a platinum filter has also been applied to improve the selectivity for the reducing gases. The results point out the difficulty to control this type of device in thin film technology. On the contrary, with thick films obtained by screen-printing, the possibility to separate HC from VOC (CH4 from CO and C2H5OH) is demonstrated. Some preliminary results concerning the use of a MnO2 filter are also presented in order to control the ozone reaction. The possibilities offered by signal processing are finally discussed using a multi-variable approach with 90 days aged sensors. AC measurements are exploited to improve the selectivity for the oxidizing gases NO2 and O3. The results obtained with a model built with atmospheric air as carrier gas appear promising.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Saul Garcia dos Santos-Alves and R. Fernandez Patier, Sensors and Actuators B 59 (1999) 69.

    Google Scholar 

  2. L. J. Hunter, G. T. Johnson and I. D. Watson, Atmos. Environ. 26B(4) (1992) 425.

    Google Scholar 

  3. R. Berkowicz, F. Palmgren, O. Hertel and E. Vignati, Sci. Total Environ. 189/190 (1996) 259.

    Google Scholar 

  4. W. B. Jonhson, F. L. Ludwig, W. F. Dabberdt and R. J. Allen, J. Air Poll. Contr. Assoc. 23 (1973) 490.

    Google Scholar 

  5. M. C. Carotta, G. Martinelli, L. Crema, C. Malagu, M. Merli, G. Ghiotti and E. Traversa, Sensors and Actuators B 76 (2001) 336.

    Google Scholar 

  6. G. Martinelli, M. C. Carotta, M. Ferroni, Y. Sadaoka and E. Traversa, ibid. 55 (1999) 99.

    Google Scholar 

  7. H. Meixner, J. Gerblinger and M. Fleischer, Sensors and Actuators B: Chemical 15(1–3) (1993) 45.

    Google Scholar 

  8. A. Zeppenfeld, K. Ingrish, M. Bauer, I. Denk and B. Ziegenbein, in Proceeding of Sensor 97 (Nuremberg 97 May) (1997) Vol. B1, p. 113.

    Google Scholar 

  9. G. Wiegleb and J. Hietbaum, Sensors and Actuators B 17 (1994) 93.

    Google Scholar 

  10. K. Oto, A. Shinobe, M. Manabe, H. Kakuuchi, Y. Yoshida and T. Nakahara, ibid. 77 (2001) 525.

    Google Scholar 

  11. H. Meixner, J. Gerblinger, U. Lampe and M. Fleischer, ibid. 23 (1995) 119.

    Google Scholar 

  12. C. Pijolat, C. Pupier, C. Testud, R. Lalauze, L. Montanaro, A. Negro and C. Malvicino, J. Electroceram. 2(3) (1998) 181.

    Google Scholar 

  13. H. Torvela, A. Harkoma-Mattila and S. Leppavuori, Sensors and Actuators B 1 (1990) 83.

    Google Scholar 

  14. G. B. Barbi, J. P. Santos, S. Serrini, P. N. Gibson, M. C. Horrillo and L. Manes, ibid. 25 (1995) 559.

    Google Scholar 

  15. R. Lalauze, J. C. Le Thiesse, C. Pijolat and M. Soustelle, Solid State Ion. 12 (1984) 453.

    Google Scholar 

  16. J. Liu and W. Weppner, Solid State Commun. 76 (1990) 311.

    Google Scholar 

  17. S. Yao, S. Hosohara, Y. Shimizu, N. Miura, H. Futata and N. Yamazoe, Chem. Lett. (1991) 2069.

  18. C. H. Lee, S. A. Akbar and C. O. Park, Sensors and Actuators B 80 (2001) 234.

    Google Scholar 

  19. M. A. Martin, J. P. Santos, H. Vasquez and J. A. Agapito, in Proceeding of Eurosensors XII (Southampton 98 Sept. 1998) p. 1036.

  20. L. Talazac, J. Brunet, V. Battut, J. P. Blanc, A. Pauly, J. P. Germain, S. Pellier and C. Soulier, Sensors and Actuators B: Chemical 76(1–3) (2001) 258.

    Google Scholar 

  21. M. Zimmer, M. Burgmair, K. Scharnagi, A. Karthigeyan, T. Doll and I. Eisele, Sensors and Actuators B 80 (2001) 174.

    Google Scholar 

  22. K. Aguir, C. Lemire and D. B. B. Lollman, ibid. 84 (2002) 1.

    Google Scholar 

  23. T. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung and H. J. Jung, ibid. 62 (2000) 102.

    Google Scholar 

  24. X. Wang, N. Miura and N. Yamazoe, ibid. 66 (2000) 74.

    Google Scholar 

  25. R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli and A. Licciulli ibid. 58 (1999) 283.

    Google Scholar 

  26. S. Nicoletti, L. Dori, G. C. Cardinali and A. Parisini, ibid. 60 (1999) 90.

    Google Scholar 

  27. G. Wiegleb and J. Heitbaum, ibid. 17 (1994) 93.

    Google Scholar 

  28. M. C. Carotta, G. Martinelli, L. Crema, M. Gallana, M. Merli, G. Ghiotti and E. Traversa, ibid. 68 (2000) 1.

    Google Scholar 

  29. C. Pijolat, Ceramurgia 5 (1995) 257.

    Google Scholar 

  30. R. Lalauze, C. Pijolat and J. P. Couput, “Procédé, capteur et dispositif de détection de traces de gaz dans un milieu gazeux,” Patents: FR 8119536 (1981), EC 4485667 (1984), US 824018722 (1984), JP 1753030 (1993).

  31. C. Pijolat, C. Pupier, M. Sauvan and G. Tournier, Sensors and Actuators B 59 (1999) 195.

    Google Scholar 

  32. R. Romppainen, H. Torvela, J. Vaananen and S. Leppavuori, ibid. 8 (1985) 271.

    Google Scholar 

  33. A. Keshavaraja, B. S. Jayashri, A. V. Ramaswamy and K. Vijayamohanan, ibid. 23 (1995) 75.

    Google Scholar 

  34. H. E. Endres, W. Gottler, R. Hartinger, S. Drost, W. Hellmich, G. Muller, C. Boschbraunmuhl, A. Krenkow, C. Perego and G. Sberveglieri, ibid. 35/36 (1996) 353.

    Google Scholar 

  35. J. Santos P. Serrini B. O'Beirn and L. Manes ibid. 43 (1997) 154.

    Google Scholar 

  36. I. Sayago, J. Gutierrez, L. Ares, J. I. Robla, M. C. Horrillo, J. Getino and J. A. Agapito, ibid. 24/25 (1995) 512.

    Google Scholar 

  37. G. Williams and G. S. V. Coles, ibid. 24/25 (1995) 469.

    Google Scholar 

  38. L. Bruno, C. Pijolat and R. Lalauze, ibid. 18/19 (1994) 195.

    Google Scholar 

  39. M. Sauvan and C. Pijolat, ibid. 58 (1999) 295.

    Google Scholar 

  40. C. D. Feng, Y. Shimizu and M. Egashira, J. Electrochem. Soc. 144(1) (1994) 220.

    Google Scholar 

  41. H. Debeda, L. Dulau, P. Dondon, F. Menil, C. Lucat and P. Massok, Sensors and Actuators B 44 (1997) 248.

    Google Scholar 

  42. M. Fleischer, S. Kornely, T. Weh, J. Frank and H. Meixner, ibid. 69 (2000) 205.

    Google Scholar 

  43. G. G. Mandayo, E. Castano, F. J. Gracia, A. Cirera, A. Cornet and J. R. Morante, ibid. 87 (2002) 88.

    Google Scholar 

  44. E. Billi, J. P. Viricelle, L. Montanaro and C. Pijolat, IEEE Sensors Journal 2(4) (2002) 342.

    Google Scholar 

  45. P. Montmeat, C. Pijolat, G. Tournier and J. P. Viricelle, Sensors and Actuators B 84 (2002) 148.

    Google Scholar 

  46. B. Riviere, J. P. Viricelle and C. Pijolat, “Development of Tin Oxide Material by Screen-Printing Technology for Gas Sensor Application,” Sensors and Actuators B 93(1–3) (2003) 531.

    Google Scholar 

  47. P. Montmeat, J. C. Marchand, R. Lalauze, J. P. Viricelle, G. Tournier and C. Pijolat, “Physico-Chemical Contribution of Gold Metallic Particles to the Action of Oxygen on Tin Dioxide Sensors,” Sensors and Actuators B 95(1–3) (2003) 83.

    Google Scholar 

  48. I. Terada and S. Arai, “Ozone Filter and Process for Reducing the Same,” US patent No 5.698.165 (Dec. 1997).

  49. R. Menzel and J. Goschnick, Sensors and Actuators B: Chemical 68(1–3) (2000) 115.

    Google Scholar 

  50. M. N. Abbas, G. A. Moustafa and W. Gopel, Anal. Chim. Acta 431 (2001) 181.

    Google Scholar 

  51. P. Breuil, N. Perdreau and C. Pijolat, Analusis 28(7) (2000) 633.

    Google Scholar 

  52. U. Weimar and W. Gopel, Sensors and Actuators B 26/27 (1995) 13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pijolat, C., Riviere, B., Kamionka, M. et al. Tin dioxide gas sensor as a tool for atmospheric pollution monitoring: Problems and possibilities for improvements. Journal of Materials Science 38, 4333–4346 (2003). https://doi.org/10.1023/A:1026387100072

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026387100072

Keywords

Navigation