Skip to main content
Log in

Statistical Properties of Turbulence: A New Approach to Characterize Transport in Fusion Plasmas

  • Published:
Czechoslovak Journal of Physics Aims and scope

Abstract

A view of recent experimental results and progress in the characterization of the statistical properties of edge turbulence in fusion plasmas is given. The study of the dynamical interplay between fluctuations in gradients, turbulent transport and radial electric fields has shown that these parameters are strongly coupled both in tokamak and stellarator plasmas. The size of turbulent events increases when the plasma deviates from the average density gradient. The radial velocity of fluctuations is of the order of 20 m/s for transport events associated with a small deviation from the most probable gradient. On the contrary, the effective radial velocity increases up to 500 m/s for transport events in which the local gradient increases significantly above the most probable gradient. These results suggest a link between the size of transport events and the nature of transport (diffusive versus non-diffusive) in the plasma boundary region. The dynamical relationship between fluctuations in gradients and transport is strongly affected by the presence of sheared poloidal flows, heating power and the proximity to instability thresholds. There is also experimental evidence that the turbulent transport is strongly coupled with fluctuations in parallel flows, reflecting that parallel flows might, at least partially, be driven by turbulent mechanisms.

Using the same methods developed for the study of turbulence, the statistical properties of the radial propagation of edge localized modes (ELMs) in the SOL of JET have also been investigated. ELM events propagate radially with effective velocities in the range of 1000 m/s, again showing a link between the radial velocity and the size of transport events. At such high velocities, the radial propagation competes strongly with parallel loss to the divertor plates and may therefore be an important mechanism transporting particles to the main chamber walls of fusion devices.

This work emphasizes the importance of the statistical description of transport processes in fusion plasmas as an alternative approach to the traditional way of characterizing transport based on the computation of effective transport coefficients (i.e. diffusion coefficients) and on average quantities (i.e., average correlation lengths).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Itoh et al.: Transport and structural Plasmas, IOP Publishing, 1999.

  2. A. Carreras: IEEE Trans. Plasma Sci. 25 (1997) 1281.

    Google Scholar 

  3. W.M. Manheimer et al.: MHD and Microinstabilities in con.ned plasma, IOP Publishing, 1989.

  4. P.H. Diamond et al.: Phys. Rev. Lett. 72 (1994) 2565.

    Google Scholar 

  5. F.L. Hinton: Phys. Fluids B 3 (1991) 696.

    Google Scholar 

  6. B. Gon¸calves et al.: Nucl. Fusion 42 (2002) 1205.

    Google Scholar 

  7. C. Hidalgo et al.: J.Nucl.Mater. 313-316 (2003) 863.

    Google Scholar 

  8. M.V.A. Heller et al.: Phys. Plasmas 6 (1999) 846.

    Google Scholar 

  9. J.A. Boedo et al.: Phys. Plasmas 8 (2001) 4826.

    Google Scholar 

  10. G.Y. Antar et al.: Phys. Rev. Lett. 87 (2001) 065001.

    Google Scholar 

  11. S. I. Krasheninnikov et al.: Phys.Let t.A 283 (2001) 368.

    Google Scholar 

  12. B.A. Carreras et al.: Phys. Plasmas (1996).

  13. S. I.Itoh, K. Itoh, and S. Toda: Phys.Re v. Lett. 89 (2002) 215001.

    Google Scholar 

  14. Ch. P. Ritz, H. Lin, T.L. Rhodes, and A. Wootton: Phys. Rev. Lett 65 (1990) 2543.

    Google Scholar 

  15. V. Antoni et al.: Phys.R ev. Lett. 80 (1998) 4185.

    Google Scholar 

  16. G.R. Tynan, L. Schmitz, L. Blush et al.: Phys. Plasmas 1 (1994) 3301.

    Google Scholar 

  17. C.P. R itz, R.D. Bengtson, S.J. Lev inson et al.: Phys. Fluids 27 (1984) 2956.

    Google Scholar 

  18. C. Hidalgo et al.: New Journal of Physics 4 (2002) 51.1

    Google Scholar 

  19. L. Garcia et al.: Phys. Plasmas 8 (2001) 4111.

    Google Scholar 

  20. M.A. Pedrosa, C. H idalgo, A. López-Fraguas et al.: in Proc. 30th EPS Conference on Control. Fusion and Plasma Physics, St.Petersburg, 7-11 July 2003, ECA, Vol. 27A.

  21. B. Gon ¸calves et al.: Czech. J. Phys. 51 (2001) 995.

    Google Scholar 

  22. B. Gon ¸calves et al.: Rev.Sc i.Ins trum. 74 (2003) 1571.

    Google Scholar 

  23. Z. Lin et al.: Science 281 (1998) 1835.

    Google Scholar 

  24. C. Hidalgo et al.: J.Plasma Fusion Res. 4 (2001) 167.

    Google Scholar 

  25. B.A. Carreras et al.: Phys. Rev. Lett. 80 (1998) 4438.

    Google Scholar 

  26. E. Snchez et al.: Phys. Plasmas 7 (2000) 1408.

    Google Scholar 

  27. C. Hidalgo et al.: Plasma Phys. Control. Fusion 37 (1995) A53.

    Google Scholar 

  28. M.A. Pedrosa et al.: Phys. Rev.Let t. 82 (1999) 3621.

    Google Scholar 

  29. D.R. Mikkelsen et al.: Phys. Plasmas 4 (1997) 1362.

    Google Scholar 

  30. P.H. Diamond et al.: Phys. Plasmas 2 (1995) 3640.

    Google Scholar 

  31. B.A Carreras et al.: Phys. Plasmas 3 (1996) 2903.

    Google Scholar 

  32. C. Hidalgo, B. Gon ¸calves, M.A. Pedrosa et al.: Plasma Phys. Control. Fusion 44 1557 (2002).

  33. J. Cast ellano et al.: Phys. Plasmas (2001).

  34. V. Frette et al.: Nature 379 (1996) 49.

    Google Scholar 

  35. S.T. Bramwell et al.: Nature 396 (1998) 552.

    Google Scholar 

  36. B.A. Carreras et al.: Phys. Rev. Lett. 83 (1999) 3653.

    Google Scholar 

  37. B. Gonçalves et al.: Plasma Phys. Control. Fusion (accepted).

  38. J. Castellano et al.: Phys. Plasmas 9 (2002) 713.

    Google Scholar 

  39. P.W. T erry: Rev. Mod.Ph ys. 72 (2000) 109.

    Google Scholar 

  40. P. Stangeby: The plasma boundary of Magnetic Fusion Devices, IOP, Bristol, 2000.

    Google Scholar 

  41. V.A. Rozhansky et al.: Nucl. Fusion 41 (2001) 387.

    Google Scholar 

  42. N.A sakura et al.: Phys. Rev.Let t. 84 (2000) 3093.

    Google Scholar 

  43. S.K. Erents et al.: Plasma Phys. Control. Fusion 42 (2000) 905.

    Google Scholar 

  44. C. Hidalgo, B. Gon¸calves, C. Silva et al.: Phys. Rev. Lett.(2003) (in press).

  45. N.D. Angelo: Phys.Fluids 8 (1965) 1748.

    Google Scholar 

  46. J.Q. Dong et al.: Phys. Plasmas 1 (1994) 3250.

    Google Scholar 

  47. G. Wang et al.: Plasma Phys.Con trol. Fusion (1998) 429.

  48. J. Gunn et al.: Czech J.Ph ys. 51 (2001) 1001.

    Google Scholar 

  49. M.A. Pedrosa et al.: in Proc. 30th EPS Conference on Control. Fusion and Plasma Physics, St.P etersburg, 7-11 July 2003, ECA, Vol. 27A.

  50. G. Frederici et al.: Nucl. Fus. 41 (2001) 1967.

    Google Scholar 

  51. T. Eich et al.: J.N ucl.Mat er. 313-316 (2003) 919.

    Google Scholar 

  52. G.F. Counsell et al.: Plasma Phys. and Control. Fusion 44 (2002) 827.

    Google Scholar 

  53. J.G. Cordey et al.: Nucl. Fusion 35 (1995) 101.

    Google Scholar 

  54. C. Hidalgo, B. Gon ¸calves, C. Silva et al.: in Proc. 30th EPS Conference on Control. Fusion and Plasma Physics, St.P etersburg, 7-11 July 2003, ECA, Vol.27A. 852 Czech. J. Phys. 53 (2003)

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gonçalves, B., Hidalgo, C., Pedrosa, M. et al. Statistical Properties of Turbulence: A New Approach to Characterize Transport in Fusion Plasmas. Czechoslovak Journal of Physics 53, 827–852 (2003). https://doi.org/10.1023/A:1026380103991

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026380103991

Navigation