Skip to main content
Log in

Common Molecular Mechanisms in Field- and Agrin-Induced Acetylcholine Receptor Clustering

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

1. The aggregation of acetylcholine receptors at the developing neuromuscular junction is critical to the development and function of this synapse. In vitro studies have shown that receptor aggregation can be induced by the finding of agrin to the muscle cell surface and by the electric field-induced concentration of a (nonreceptor) molecule at the cathodal cell pole.

2. We report here on the interaction between agrin binding and electric fields with respect to the distribution of receptors and agrin binding sites.

3. (a) Pretreatment of cells with agrin completely blocks the development of field-induced receptor clusters. (b) Field-induced aggregation of receptors precedes the field-induced aggregation of agrin binding sites by approximately 30min. (c) Electric fields prevent agrin-induced receptor clustering despite the presence of agrin binding sites and freely diffusing receptors.

4. These results indicate that another membrane component—but not the agrin binding site and not the receptor—is required for agrin-induced receptor clustering. They also suggest that electric fields and agrin cause receptor clustering via common molecular mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, M. J., and Cohen, M. W. (1977). Nerve induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J. Physiol. 268:757–773.

    Google Scholar 

  • Anglister, L., and McMahan, U. J. (1985). Basal lamina directs acetylcholinesterase accumulation at synaptic sites in regenerating muscle. J. Cell Biol. 101:735–743.

    Google Scholar 

  • Baker, L. P., and Peng, H. B. (1993). Tyrosine phosphorylation and acetylcholine receptor cluster formation in cultured Xenopus muscle cells. J. Cell. Biol. 120:185–195.

    Google Scholar 

  • Bloch, R. J., and Pumplin, D. W. (1988). Molecular events in synaptogenesis: Nerve-muscle adhesion and postsynaptic differentiation. Am. J. Physiol. 254:C345–C364.

    Google Scholar 

  • Bowe, M. A., and Fallon, J. R. F. (1995). The role of agrin in synapse formation. Annu. Rev. Neurosci. 18:443–462.

    Google Scholar 

  • Bowe, M. A., Deyset, K. A., Leszyk, J. D., and Fallon, J. R. (1994). Identification and purification of an agrin receptor from Torpedo postsynaptic membranes: A heteromeric complex related to the dystroglycans. Neuron 12:1173–1180.

    Google Scholar 

  • Cohen, M. W., Moody-Corbett, F., and Godfrey, E. W. (1994). Neuritic deposition of agrin on culture substrate: Implications for nerve-muscle synaptogenesis. J. Neurosci. 14:3293–3303.

    Google Scholar 

  • Cohen, M. W., Jacobson, C., Godfrey, E. W., Campbell, K. P., and Carbonetto, S. (1995). Distribution of α-dystroglycan during embryonic nerve-muscle synaptogenesis. J. Cell. Biol. 129:1093–1101.

    Google Scholar 

  • Dubinsky, J. M., Loftus, D. J., Fischbach, G. D., and Elson, E. L. (1989). Formation of acetylcholine receptor clusters in chick myotubes: Migration or new insertion? J. Cell Biol. 109:1733–1743.

    Google Scholar 

  • Ferns, M. J., Campanelli, J. T., Hoch, W., Scheller, R. H., and Hall, Z. (1993). The ability of agrin to cluster AChRs depends on alternative splicing and on cell surface proteoglycans. Neuron 11:491–502.

    Google Scholar 

  • Fertuck, H. C., and Salpeter, M. M. (1974). Localization of acetylcholine receptor by 125I-labeled alpha-bungarotoxin binding at mouse motor endplates. Proc. Natl. Acad. Sci. USA 71:1376–1378.

    Google Scholar 

  • Fertuck, H. C., and Salpeter, M. M. (1976). Quantitation of junctional and extrajunctional acetylcholine receptors by electron microscope autoradiography after 125I-alpha-bungarotoxin binding at mouse neuromuscular junctions. J. Cell Biol. 69:144–58.

    Google Scholar 

  • Gee, S. H., Blacher, R. W., Douville, P. J., Provost, P. R., Yurchenco, P. D., and Carbonetto, S. (1993). Laminin-binding protein 120 from brain is closely related to the dystrophin-associated glycoprotein, dystroglycan, and binds with high affinity to the major heparin binding domain of laminin. J. Biol. Chem. 268:14972–14980.

    Google Scholar 

  • Jones, R., and Vrbova, G. (1974). Two factors responsible for the development of denervation hypersensitivity. J. Physiol. Lond. 236:517–538.

    Google Scholar 

  • Luther, P. W., and Peng, H. B. (1985). Membrane-related specializations associated with acetylcholine receptor aggregates induced by electric fields. J. Cell Biol. 100:235–44.

    Google Scholar 

  • Magill, S. C., and McMahan, U. J. (1988). Motor neurons contain agrin-like molecules. J. Cell Biol. 107:1825–1833.

    Google Scholar 

  • Magill-Solc, C., and McMahan, U. J. (1990). Synthesis and transport of agrin like molecules in motor neurons. J. Exp. Biol. 153:1–10.

    Google Scholar 

  • McMahan, U. J. (1990). The agrin hypothesis. Cold Spring Harbour Symp. Quant. Biol. 55:407–418.

    Google Scholar 

  • Nastuk, M. A., Lieth, E., Ma, J. Y., Cardasis, C. A., Moynihan, E. B., McKechnie, B. A., and Fallon, J. R. (1991). The putative agrin receptor binds ligand in a calcium-dependent manner and aggregates during agrin-induced acetylcholine receptor clustering. Neuron 7:807–818. [Published erratum appears in Neuron 8(3):606–607 (1992).]

    Google Scholar 

  • Nitkin, R. M., Smith, M. A., Magill, C., Fallon, J. R., Yao, Y. M., Wallace, B. G., and McMahan, U. J. (1987). Identification of agrin, a synaptic organizing protein from Torpedo electric organ. J. Cell Biol. 105:2471–2478.

    Google Scholar 

  • Orida, N., and Poo, M.-M. (1978). Electrophoretic movement and localisation of acetylcholine receptors in the embryonic muscle cell membrane. Nature (Lond.) 275:31–35.

    Google Scholar 

  • Peng, H. B., and Cheng, P. C. (1982). Formation of postsynaptic specializations induced by latex beads in cultured muscle cells. J. Neurosci. 2:1760–1774.

    Google Scholar 

  • Peng, H. B., Baker, L. P., and Dai, Z. (1993). A role of tyrosine phosphorylation in the formation of acetylcholine receptor clusters induced by electric fields in cultured Xenopus muscle cells. J. Cell Biol. 120:197–204.

    Google Scholar 

  • Poo, M.-M. (1981). In situ electrophoresis of membrane components. Annu. Rev. Biophys. Bioeng. 10:245–276.

    Google Scholar 

  • Steinbach, J. H. (1981). Developmental changes in acetylcholine receptor aggregates at rat skeletal neuromuscular junctions. Dev. Biol. 84:267–276.

    Google Scholar 

  • Stollberg, J., and Fraser, S. E. (1988). Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation. J. Cell Biol. 107:1397–1408.

    Google Scholar 

  • Stollberg, J., and Fraser, S. E. (1989). Electric field-induced redistribution of ACh receptors on cultured muscle cells: Electromigration, diffusion, and aggregation. Biol. Bull. 176 (S):157–163.

    Google Scholar 

  • Stollberg, J., and Fraser, S. E. (1990a). Acetylcholine receptor clustering is triggered by a change in the density of a nonreceptor molecule. J. Cell Biol. 111:2029–2039.

    Google Scholar 

  • Stollberg, J., and Fraser, S. E. (1990b). Local accumulation of acetylcholine receptors is neither necessary nor sufficient to induce cluster formation. J. Neurosci. 10:247–255.

    Google Scholar 

  • Wallace, B. G. (1991). The mechanism of agrin-induced acetylcholine receptor aggregation. Philos. Trans. R. Soc. Lond. [Biol.] 331:273–280.

    Google Scholar 

  • Wallace, B. G. (1994). Staurosporine inhibits agrin-induced acetylcholine receptor phosphorylation and aggregation. J. Cell Biol. 125:661–668.

    Google Scholar 

  • Wallace, B. G., Qu, Z., and Huganir, R. L. (1991). Agrin induces phosphorylation of the nicotinic acetylcholine receptor. Neuron 6:869–878.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabrina, F., Stollberg, J. Common Molecular Mechanisms in Field- and Agrin-Induced Acetylcholine Receptor Clustering. Cell Mol Neurobiol 17, 207–225 (1997). https://doi.org/10.1023/A:1026365812496

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026365812496

Navigation