Skip to main content
Log in

DSC study of precipitation processes in Cu-Co-Si alloys

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Using differential scanning calorimetry (DSC) the precipitation processes of supersaturated solid solutions of three Cu-Co-Si alloys containing the same atomic cobalt content were investigated. Thermoanalytical and previous studies, reveal that the decomposition begins with cobalt clustering which initiates the precipitation of the Co2Si stoichiometric particles, which in turn dissolves after further heating. Volume fractions are unequivocally determined by the amount of cobalt present in these alloys. It is infered that surplus silicon atoms retained in the solution increase the reaction rate and dispersity of precipitate structure. Kinetic parameters were obtained by a convolution method based in the Mehl-Johnson-Avrami (MJA) formalism. The lower activation energy associated with cobalt clustering is attributed to the contribution of quenched-in vacancies. Superimposed to the MJA formalism and adaptative spherical diffusion model was used for Co2Si precipitation with particle size as a disposable parameter. This model further confirmed that as silicon content increases particle dispersity becomes more pronounced. Such results are also infered from a three dimensional diffusion dissolution model previously developed which adjusts quite well to such process in the present cases. Age hardening experiments are in line with all previous results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Corson, Rev. Metallurgia, 27 (1930) 265.

    Google Scholar 

  2. S. Gallo, Met. Italiana, (1958) 15.

  3. N. I. Revina, A. K. Nikolahev and V. M. Rosenberg, Metalli, 17 (1975) 215.

    Google Scholar 

  4. V. F. Grabin and U. B. Malevsky, Metalloved. i Term. Obrakotka Metallov, 3 (1965) 28.

    Google Scholar 

  5. T. Toda, Trans. Jpn. Inst. Metals, 11 (1970) 24.

    CAS  Google Scholar 

  6. M. D. Teplitsky, A. K. Nikolahev, N. I. Revina and V. M. Rosenberg, Fizika Met. Metalloved, 40 (1975) 1240.

    Google Scholar 

  7. A. Korbel, W. Bochniak, A. Pawelek, F. Dobrzanski and H. Dybieh, Rudy i Metale Niezelarne, 25 (1980) 431.

    Google Scholar 

  8. B. Albert, Z. Metallk., 76 (1985) 528.

    CAS  Google Scholar 

  9. T. Toda and H. Takeuchi, J. Jpn. Inst. Metals, 11 (1970) 24.

    CAS  Google Scholar 

  10. B. Albert, Z. Metallk., 75 (1985) 475.

    Google Scholar 

  11. J. Lendvai, T. Ungar, I. Kovács and B. Albert, J. Mater. Sci., 23 (1988) 4059.

    Article  CAS  Google Scholar 

  12. E. Donoso and A. Varschavsky, Anales del IX Congreso Internacional de Tecnología de Materiales y III Congreso Iberoamericano de Ingeniería MetalÚrgica y de Materiales, Octubre 1994, Sao Paulo, Brasil, Vol. 2, p. 493.

    Google Scholar 

  13. A. Varschavsky and E. Donoso, Mater. Lett., 15 (1992) 207.

    Article  CAS  Google Scholar 

  14. A. Varschavsky and E. Donoso, Anales del III Congreso Iberoamericano de Ingeniería Mecánica, Septiembre 1997, La Habana, Cuba, Vol. 1, p. 119.

    Google Scholar 

  15. A. Varschavsky and E. Donoso, J. Therm. Anal. Cal., 68 (2002) 231.

    Article  CAS  Google Scholar 

  16. E. J. Mittemeijer, Lui Cheng, P. J. Van der Shaaf, C. M. Brakman and B. M. Korevaar, Metall. Trans., 19 A (1988) 925.

    CAS  Google Scholar 

  17. A. M. Brown and M. F. Ashby, Acta Metall., 28 (1980) 1085.

    Article  CAS  Google Scholar 

  18. F. J. Shi, T. G. Nieh and Y. T. Chou, Scripta Mater., 43 (2000) 265.

    Article  CAS  Google Scholar 

  19. E. Donoso and A. Varschavsky, J. Thermal Anal., 45 (1995) 1419.

    CAS  Google Scholar 

  20. A. Varschavsky and M. Pilleux, Mater. Letts., 17 (1993) 364.

    Article  CAS  Google Scholar 

  21. R. F. Speyer, B. C. Richardson and S. H. Risbud, Metall. Trans., 17 A (1986) 1479.

    CAS  Google Scholar 

  22. A. Varschavsky, Thermochim. Acta, 203 (1992) 391.

    Article  CAS  Google Scholar 

  23. A. Varschavsky and J. Sesták, in Characterization Techniques of Glasses and Ceramics, J. M. Rincón and M. Romero, Eds Springer, N. Y. 1999, p. 85.

    Google Scholar 

  24. A. Borrego and G. González-Docel, Mater. Sci. Eng., A245 (1998) 10.

    CAS  Google Scholar 

  25. A. Borrego and G. González-Docel, Mater. Sci. Eng., A276 (2000) 292.

    CAS  Google Scholar 

  26. J. W. Christian, The Theory of Transformation of Metals and Alloys, 2nd Ed., Pergamon Press, England 1971, p. 534.

    Google Scholar 

  27. J. Crank, The Mathematics of Diffusion, Oxford University Press, London (England) 1976, pp. 84, 86.

    Google Scholar 

  28. A. Varschavsky and E. Donoso, Thermochim. Acta, 69 (1983) 341.

    Article  CAS  Google Scholar 

  29. A. Varschavsky and E. Donoso, J. Mater. Sci., 21 (1986) 3873.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varschavsky, A., Donoso, E. DSC study of precipitation processes in Cu-Co-Si alloys. Journal of Thermal Analysis and Calorimetry 74, 41–56 (2003). https://doi.org/10.1023/A:1026365400535

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026365400535

Navigation