Skip to main content
Log in

Paradox of “Self-Outflow” of a Free Liquid Jet

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract

The effect of accumulation of reversible strains on the pressure head is analyzed theoretically for elastic and viscoelastic liquid flow from convergent channels. It is shown that, depending on the rheological features of the liquids, the pressure head can both increase and decrease as compared with the pressure determined by the Bernoulli formula. In particular, a situation in which a liquid flows out without any pressure head applied (paradox of “self-outflow”) is possible within the framework of the model. Transition to different viscoelastic liquid flow regimes as a function of the constitutive parameters is considered with reference to a channel with a sharp bottleneck (abrupt decrease in the cross-section).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Chang Dae Han, Rheology in Polymer Processing, Academic Press, New York (1976).

    Google Scholar 

  2. A. S. Lodge, Elastic Liquids, Academic Press, London-New York (1964).

    Google Scholar 

  3. R. G. Larson, "Instabilities of viscoelastic flows," Rheological Acta, 31, No. 3, 213 (1992).

    Google Scholar 

  4. A.V. Bazilevskii, V. M. Entov, and A.N. Rozhkov, "Elastic stresses in capillary jets of dilute polymer solutions," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 3 (1985).

  5. R. P. Mun, J.A. Byars, and D.V. Boger, "The effect of polymer concentration and molecular weight on the breakup of laminar capillary jets," J. Non-Newtonian Fluid Mech., 74, 285 (1998).

    Google Scholar 

  6. Y. Christanti and L.M. Walker, "Surface tension driven jet break up of strain-hardening polymer solutions," J. Non-Newtonian Fluid Mech., 100, 9 (2001).

    Google Scholar 

  7. J.D. Mayer, A.V. Bazilevsky, and A.N. Rozhkov, "Effects of polymeric additives on thermal ink jets," in: Proc. IS&T's NIP13: Intern. Conference on Digital Printing Technologies, IS&T, Seattle, USA (1997), P. 675.

    Google Scholar 

  8. J.D. Mayer, A.V. Bazilevsky, and A.N. Rozhkov, "Effects of polymeric additives on thermal ink jets," in: E. Hanson (Ed.), Recent Progress in Ink Jet Technologies II, Series Editor: R. Eschbach, IS&T, (1999), P. 450.

  9. O. L. Kulikov and K. Hornung, "A simple geometrical solution to the surface fracturing problem in extrusion processes," J. Non-Newtonian Fluid Mech., 98, 107 (2001).

    Google Scholar 

  10. Y. Tomita and T. Takahashi, "An anomalous phenomenon occurring in the flow of viscoelastic fluids out of ducts," Rheological Acta, 27, No. 5, 523 (1988).

    Google Scholar 

  11. T. Takahashi and Y. Tomita, "A study on an anomalous phenomenon occurring in the issuing of viscoelastic fluids from ducts (critical point of the anomalous phenomenon)," JSME Intern. J. Ser. II, 32, 348 (1989).

    Google Scholar 

  12. M. M. Denn, "Extrusion instabilities and wall slip," Ann. Rev. Fluid Mech., 33, 265 (2001).

    Google Scholar 

  13. E. J. Hinch, "Mechanical model of dilute polymer solutions in strong flows," Phys. Fluids, 20, No. 10, Pt. 2, S22 (1977).

    Google Scholar 

  14. P. G. De Gennes, "Coil-stretch transition of dilute flexible polymers under ultra high velocity gradients," J. Chem. Phys., 60, 5030 (1974).

    Google Scholar 

  15. A.V. Bazilevskii, S. I. Voronkov, V.M. Entov, and A.N. Rozhkov, "Orientation effects in breakup of jet and filaments of dilute polymer solutions," Dokl. Akad. Nauk SSSR, 257, 336 (1981).

    Google Scholar 

  16. A.N. Rozhkov, "Intensive flows of polymer solutions," Thesis for Degree of Candidate of Physico-Mathematical Sciences [in Russian], Moscow (1984).

  17. V. M. Entov, Kh. S. Kestenboim, and A.N. Rozhkov, "On the flow of viscoelastic liquids from convergent channels," Dokl. Akad. Nauk SSSR, 282, 879 (1985).

    Google Scholar 

  18. V. M. Entov and A.N. Rozhkov, "Elastic effects in polymer solution flows through variable-cross-section channels and porous media," Inzh.-Fiz. J., 49, No. 3, 390 (1985).

    Google Scholar 

  19. V. M. Entov, V. I. Kordonskii, I.V. Prokhorov, A.N. Rozhkov, A. I. Toropov, Z. P. Shul'man, and A. L. Yarin, "Intensive extension of polymer solutions," Dokl. Akad. Nauk SSSR, 301, 867 (1988).

    Google Scholar 

  20. V. M. Entov, V. I. Kordonskii, I.V. Prokhorov, A.N. Rozhkov, A. I. Toropov, Z. P. Shul'man, and A. L. Yarin, "Intensive extension of moderate-concentration polymer solutions," Vysokomoleculyarn. Soedineniya. Ser. A., 30, 2486 (1988).

    Google Scholar 

  21. W. K. Lee and H. H. George, "Flow visualization of fiber suspensions," Polymer Eng. Sci., 18, 146 (1978).

    Google Scholar 

  22. A.Yu. Ishlinskii, "Rolling and drawing at high deformation rates," Prikl. Mat. Mekh., 7, 226 (1943).

    Google Scholar 

  23. A.N. Rozhkov, "Dynamics of filaments of polymer solutions," Inzh.-Fiz. J., 45, No. 1, 72 (1983).

    Google Scholar 

  24. V. M. Entov, V. I. Kordonskii, V.A. Kuz'min, Z. P. Shul'man, and A. L. Yarin, "Investigation of breakup of jets of rheologically complex liquids," Zh. Prikl. Mekh. Tekh. Fiz., No. 3, 90 (1980).

  25. V. M. Entov, S. M. Makhkamov, and K.V. Mukuk, "On one effect of normal stresses," Inzh.-Fiz. J., 34, No. 3, 514 (1978).

    Google Scholar 

  26. M. P. Brenner and D. Gueyffier, "On the bursting of viscous films," Phys. Fluids, 11, No. 3, 737 (1999).

    Google Scholar 

  27. V. M. Entov and Kh. S. Kestenboim, "On the mechanics of fiber drawing," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 5, 26 (1987).

  28. V. M. Entov, Kh. S. Kestenboim, S.V. Pokrovskii, and G.A. Shugai, "One-dimensional dynamics of jet flows of elastic fluids," Izv. Ros. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 3 (1997).

  29. S. L. Bazhenov, I.A. Dukhovskii, P. I. Kovalev, and A.N. Rozhkov, "Breakup of an SVM aramide fiber during high-velocity transverse impact," Vysokomoleculyarn. Soedineniya. Ser. A., 43, 73 (2001).

    Google Scholar 

  30. G. Astarita and G. Marrucci, Principles of Non-Newtonian Fluid Mechanics, McGraw-Hill, London, etc. (1974).

    Google Scholar 

  31. A. L. Yarin, "Theoretical analysis of the process of intensive uniaxial extension of concentrated polymeric systems at a constant velocity of the gripping device," Vysokomoleculyarn. Soedineniya. Ser. A., 30, 2492 (1988).

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozhkov, A.N. Paradox of “Self-Outflow” of a Free Liquid Jet. Fluid Dynamics 38, 507–517 (2003). https://doi.org/10.1023/A:1026362309383

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1026362309383

Navigation